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Recap: Summaries of Variablity (Measures of Spread)

Motivated by asking what kind of variability is seen in the data or how spread
out the data is.

Range: The difference between the highest and lowest values (Range = max -
min)

IQR: The Interquartile Range, how spread out is the middle 50% (IQR = Q3 -
Q1)

Variance/Standard Deviation: Uses squared distance from the mean.

Variance Standard Deviation

Population

Sample

σ2 = ∑N

i=1(xi − x̄)21
N σ = √ ∑N

i=1(xi − x̄)21
N

s2 = ∑n

i=1(xi − x̄)21
n−1 s = √ ∑n

i=1(xi − x̄)21
n−1
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Recap

Spread
Summarizing Data Numerically
Example: Taking a sample of size 5 from a population we
record the following values:

58, 60, 61, 68, 56

Find the variance and standard deviation of this sample.
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Example: Finding the Variance
Since we are told it is a sample, we need to use sample variance. The mean of
58, 60, 61, 68, 56 is 60.6

s2 =
5

∑
i=1

(xi − x̄)2

= ((x1 − x̄)2 + (x2 − x̄)2 + (x3 − x̄)2 + (x4 − x̄)2 + (x5 − x̄)2)

= ((58 − 60.6)2 + (60 − 60.6)2 + (61 − 60.6)2 + (68 − 60.6)2 + (56 − 60.6)2)

= ((−2.6)2 + (−0.6)2 + (0.4)2 + (7.4)2 + (−4.6)2)

= (6.76 + 0.36 + 0.16 + 54.76 + 21.16)

= 20.8

1

n − 1

1

n − 1

1

5 − 1

1

4

1

4
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Example: Finding the Standard Deviation
With  known, finding  is simple:s2 s

s = √s2

= √20.8

= 4.5607017
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Chapter 4, Section 1Chapter 4, Section 1
Linear Relationships Between VariablesLinear Relationships Between Variables
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Describing
Relationships

Idea

Describing Relationships
We have a standard idea of how our experiment works:

Bivariate data oftern arise because a quantitative
experimental variable x has been varied between several
different setting (treatment).

It is helpful to have an equation relating y (the response)
to x when the purposes are summarization, interpolation,
limited extrapolation, and/or process optimization/
adjusment.

and we know that with an valid experiment, we can say
that the changes in our experimental variables actually
cause changes in our response.

But how do we describe those response when we know
that random error would make each result different... 8 / 39



Describing
Relationships

Idea

Types of relationships
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Describing
Relationships

Idea

The Underlying Idea

We start with a valid mathematical model, for instance a
line:

In this case,

 is the intercept - when , .

 is the slope - when  increase by one unit, 
increases by  units.

y = β0 + β1 ⋅ x

β0 x = 0 y = β0

β1 x y
β1
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Describing
Relationships

Idea

Ex: Bar Stress

Example: Stress on Bars
An experiment examining the effects of stress on time
until fracture is performed by taking a sample of 10
stainless steel rods immersed in 40% CaCl solution at 100
degrees Celsius and applying different amounts of
uniaxial stress.

The results are recorded below:

stress 
2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0

lifetime
(hours)

63 58 55 61 62 37 38 45 46 19

A good first place to investigate the relationship between
our experimental variables (in this case, stress) and the
response (in this case, lifetime) is to use a scatterplot and
look to see if there might be any basic mathematical
function that could describe the relationship between the
variables.

(kg/mm2)
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Describing
Relationships

Idea

Ex: Bar Stress

Example: Stress on Bars (continued)

Our data:

stress 
2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0

lifetime
(hours)

63 58 55 61 62 37 38 45 46 19

Plotting stress along the -axis and plotting lifetime
along the -axis we get

(kg/mm
2
)

x
y
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Describing
Relationships

Idea

Ex: Bar Stress

Example: Stress on Bars (continued)

Our data:

stress 
2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0

lifetime
(hours)

63 58 55 61 62 37 38 45 46 19

Examining the plot, we might determine that there
could be a linear relationship between the two. The
red line looks like it fits the data pretty well.

(kg/mm
2
)
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Describing
Relationships

Idea

Ex: Bar Stress

Example: Stress on Bars (continued)

Our data:

stress 
2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0

lifetime
(hours)

63 58 55 61 62 37 38 45 46 19

But there are several other lines that fit the data pretty
well, too.

How do we decide which is best?

(kg/mm
2
)
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Describing
Relationships

Idea

Ex: Bars

Fitting Lines

Where the line comes from

When we are trying to find a line that fits our data what
we are really doing is saying that there is a true physical
relationship between our experimental variable  is
related to our response  that has the following form:

Theoretical Relationship

However, the response we observe is also effected by
random noise:

Observed Relationship

If we did a good job, hopefully we will have small enough
errors so that we can say

x
y

y = β0 + β1 ⋅ x

y = β0 + β1 ⋅ x + errors

= signal + noise

y ≈ β0 + β1 ⋅ x 15 / 39



Describing
Relationships

Idea

Ex: Bars

Fitting Lines

Where the line comes from

So, if things have gone well, we are attempting to estimate
the value of  and  from our observed relationship

Using the following notation:

 is the estimated value of  and
 is the estimated value of 

 is the estimated response

We can write a fitted relationship:

The key here is that we are going from the underlying
true, theoretical relationship to an estimated relationship.

In other words, we will never get the true values  and 
 but we can estimate them.

However, this doesn't tell us how to estimate them.

β0 β1

y ≈ β0 + β1 ⋅ x

b0 β0
b1 β1
ŷ

ŷ = b0 + b1 ⋅ x

β0
β1
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Describing
Relationships

Idea

Ex: Bars

Fitting Lines

Best Estimate

The principle of Least Squares

A good estimte should be based on the data.

Suppose that we have observed responses 
for experimental variables set at .

Then the Principle of Least Squares says that the best
estimate of  and  are values that minimize

In our case, since  we need to choose
values for  and  that minimize

In other words, we need to minimize something with
respect to two values we get to choose - we can do this by
taking derivatives.

y1, y2, … , yn

x1, x2, … , xn

β0 β1

n

∑
i=1

(yi − ŷ i)
2

ŷ i = b0 + b1 ⋅ xi

b0 b1

n

∑
i=1

(yi − ŷ i)
2 =

n

∑
i=1

(yi − (b0 + b1 ⋅ xi))2
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Deriving the Least Squares Estimates(Optional reading)

We can rewrite the target we want to minimize so that the variables are less
tangled together:

n

∑
i=1

(yi − ŷ i)
2 =

n

∑
i=1

(yi − (b0 + b1xi))2

=
n

∑
i=1

(y2
i

− 2yi(b0 + b1xi) + (b0 + b1xi)
2)

=
n

∑
i=1

y2
i

−
n

∑
i=1

2yi(b0 + b1xi) +
n

∑
i=1

(b0 + b1xi)
2

=
n

∑
i=1

y2
i

−
n

∑
i=1

(2yib0 + 2yib1xi) +
n

∑
i=1

(b2
0 + 2b0b1xi + (b1xi)

2)

=
n

∑
i=1

y2
i

−
n

∑
i=1

2yib0 −
n

∑
i=1

2yib1xi +
n

∑
i=1

b2
0 +

n

∑
i=1

2b0b1xi +
n

∑
i=1

b2
1x2

i

=
n

∑
i=1

y2
i

− 2b0

n

∑
i=1

yi − 2b1

n

∑
i=1

yixi + nb2
0 + 2b0b1

n

∑
i=1

xi + b2
1

n

∑
i=1

x2
i
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Describing
Relationships

Idea

Ex: Bars

Fitting Lines

Best Estimate

Deriving the Least Squares Estimates (continued)

How do we minimize it?

Since we have two "variables" we need to take
derivates with respect to both.

Remember we have our data so we know every value
of  and  and can treat those parts as constants.

The derivative with respect to :

The derivative with respect to :

xi yi

b0

−2
n

∑
i=1

yi + 2nb0 + 2b1

n

∑
i=1

xi

b1

−2
n

∑
i=1

yixi + 2b0

n

∑
i=1

xi + 2b1

n

∑
i=1

x2
i
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Describing
Relationships

Idea

Ex: Bars

Fitting Lines

Best Estimate

Deriving the Least Squares Estimates (continued)

We set both equal to 0 and solve them at the same time:

We can rewrite the first equation as:

and then replace all  in the second equation (there is
some algebra type stuff along the way, of course)

−2
n

∑
i=1

yi + 2nb0 + 2b1

n

∑
i=1

xi = 0

−2
n

∑
i=1

yixi + 2b0

n

∑
i=1

xi + 2b1

n

∑
i=1

x2
i

= 0

b0 =
n

∑
i=1

yi − b1

n

∑
i=1

xi

= ȳ − b1x̄

1

n

1

n

b0
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Describing
Relationships

Idea

Ex: Bars

Fitting Lines

Best Estimate

Deriving the Least Squares Estimates (continued)

After a little simplification we arrive at our estimates:

Least Squares Estimates for Linear Fit

Wrap Up

Don't try to memorize the derivation. I will never ask
you to do that on an exam.
Try to understand the simplification steps - the ones
that moved constants out of summations for example.
This is one rule - there are others, but Least Squares
Estimates have some useful properties that will make

b0 = ȳ − b1x̄

b1 =

=

∑n

i=1 yixi − nx̄ȳ

∑n

i=1 x2
i

− nx̄2

∑n

i=1(xi − x̄)(yi − ȳ)

∑n

i=1(xi − x̄)2
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Describing
Relationships

Idea

Ex: Bars

Fitting Lines

Best Estimate

Example: Stress on Bars

stress 
2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0

lifetime
(hours)

63 58 55 61 62 37 38 45 46 19

Estimating the best slope and intercept using least
squares:

In our case we have the following:

(kg/mm
2
)

b0 = ȳ − b1x̄

b1 =

=

∑n

i=1 yixi − nx̄ȳ

∑n

i=1 x2
i

− nx̄2

∑n

i=1(xi − x̄)(yi − ȳ)

∑n

i=1(xi − x̄)2
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Describing
Relationships

Idea

Ex: Bars

Fitting Lines

Best Estimate

Example: Stress on Bars

stress 
2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0

lifetime
(hours)

63 58 55 61 62 37 38 45 46 19

Using this we can estimate :

(kg/mm
2
)

10

∑
i=1

yi = 484,
10

∑
i=1

xi = 200,
10

∑
i=1

xiyi = 8407.5,
10

∑
i=1

x2
i = 5412.5,

b1

b1 =

=

=

≈ −0.9009

∑n

i=1 yixi − nx̄ȳ

∑n

i=1 x2
i

− nx̄2

8407.5 − 10( )( )200
10

484
10

5412.5 − 10( )
2

200
10

−1272.5

1412.5
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Describing
Relationships

Idea

Ex: Bars

Fitting Lines

Best Estimate

Example: Stress on Bars

stress 
2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0

lifetime
(hours)

63 58 55 61 62 37 38 45 46 19

And using  we can estimate :

Which gives us the Fitted Relationship:

(kg/mm
2
)

10

∑
i=1

yi = 484,
10

∑
i=1

xi = 200,
10

∑
i=1

xiyi = 8407.5,
10

∑
i=1

x2
i = 5412.5,

b1 b0

b0 = ȳ − b1x̄

= ( ) − b1 ( )

= 48.4 − ( ) 20.0

= 66.4177

484

10

200

10

−1272.5

1412.5
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Describing
Relationships

Idea

Ex: Bars

Fitting Lines

Best Estimate

Example: Stress on Bars

stress 
2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0

lifetime
(hours)

63 58 55 61 62 37 38 45 46 19

(kg/mm
2
)

ŷ = 66.4177 − 0.9009x
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Describing
Relationships

Idea

Ex: Bars

Fitting Lines

Best Estimate

Example: Stress on Bars

stress 
2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0

lifetime
(hours)

63 58 55 61 62 37 38 45 46 19

Fitted line

(kg/mm
2
)

26 / 39



JMPJMP
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Describing
Relationships

Using JMP

Topics to be covered in JMP
Fitting linear relationships

Describing quality of fit (correlation, )

Fitting relationships using multiple variables

Fitting non-linear relationships

R2
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An exampleAn example
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Example: Manufacturing Ball Bearings
Controlling surface roughness is an important part of the manufacture of
bearing balls. The key step in this smoothing the balls involves the use of a
spinning weighted disc. Two important aspects of this are the rotation speed
of the disc and the weight applied to the disc. Since higher weights and higher
rotation speed are all known to cause shorter lifetimes for the discs (which
requires halts in production, costs of new discs, and so on), a team of
engineers are attempting to better understand the relationship between the
rotation speed, the weight, and the resulting surface roughness of the balls
produced.
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Experiment 1: Constant speed, changing applied
weight
With the disc rotation speed locked at 50 rotations/second, the team of
engineers created 60 batches of balls using differently weighted discs (0.025 g,
0.050 g, 0.075 g, 0.100 g, ..., 0.500 g) and randomly selected one ball from each
batch. The results are recorded in the dataset "balls-001.csv" on the course
page.
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Experiment 2: Changing speed, constant applied
weight
With an better understanding of the relationship between weight and surface
roughness, the team turned their attention to rotation speed. This time the
produced 3 batches for each of 15 rotation speeds (25, 30, 35, 40, 45, 50, 55, 60,
65, 70, 75, 80, 85, 90, and 95 rotations per second). The results are recorded in
the dataset "balls-002.csv" on the course page.
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Experiment 3: Changing speed changing applied
weight
With a better understanding of the relationship between weight and surface
roughness, the team turned their attention to rotation speed. This time the
produced 3 batches for each combination of 20 weights (0.025 g, 0.050 g, 0.075
g, 0.100 g, ..., 0.500 g) and 15 rotation speeds (25, 30, 35, 40, 45, 50, 55, 60, 65,
70, 75, 80, 85, 90, and 95 rotations per second). The results are recorded in the
dataset "balls-003.csv"
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Experiment 4: Changing categorical speed changing
applied weight
Now that they have a complete model, what if they had attempted this
experiment with a machine in which rotation speed only consisted of "low,
medium, and high"?

Again, time the produced 3 batches for each combination of 20 weights (0.025
g, 0.050 g, 0.075 g, 0.100 g, ..., 0.500 g) and three rotation speeds: low (encoded
as 1), medium (encoded as 2), high (encoded as 3). The results are recorded in
the dataset "balls-004.csv"
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Experiment 4: Changing categorical speed changing
applied weight
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ResidualsResiduals
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Residuals Residuals

The "residue" left over from fitting a line

Each point represents some  pair from our
data

We use the Least Squares approach to find the best fit
line, 

For any value  in our data set, we can get a fitted (or
predicted) value 

(xi, yi)

ŷ = b0 + b1x

xi

ŷ i = b0 + b1xi
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Residuals Residuals

The residual is the difference between the observed
data point and the fitted prediction:

In the linear case, using , we can also
write

for each pair .

ei = yi − ŷ i

ŷ = b0 + b1x

ei = yi − ŷ i = yi − (b0 + b1xi)

(xi, yi) 38 / 39



Residuals Residuals

ROPe: Residuals = Observed - Predicted (using symbol )

If  then  and  meaning the
observed is larger than the predicted - we are
"underpredicting"

If  then  and  meaning the
observed is smaller than the predicted - we are
"overpredicting"

ei

ei > 0 yi − ŷ i > 0 yi > ŷ i

ei < 0 yi − ŷ i < 0 yi < ŷ i
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