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Good Fit



Good Fit Knowing when a relationship fits the data well

So far we have been fitting lines to describe our data. A
first question to ask may be something like:

« Q: What kind of situations can a linear fit be used to
describe the relationship between an expreimental
variable and a response?

e A: Any time both the experimental variable and the
response variable are numeric.

However all fits are not created the same:

Good linear fit OK linear fit Poar linear fit
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Good Fit

Numeric Desc.

Describing Fit Numerically

1. Sample correlation (aka, sample linear correlation)

For a sample consisting of data pairs (1, y1), (2, ¥2),
(z3,¥3), ... (Tn, Yn), the sample linear correlation, r, is
defined by

S (z —2)(y — )
V(S @ - 2?) (S i - 9)°)

which can also be written as

r —=

S Ty — NIy

\/(Z?zl z; —nz’) (XL v —ni’)

r =
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Good F|‘t 1. Sample correlation (aka, sample linear correlation)
The value of 7 is always between -1 and +1.

Numeric Desc. « The closer the value is to -1 or +1 the stronger the
linear relationship.

« Negative values of r indicate a negative relationship
(as x increases, y decreases).

» Positive values of r indicate a positive relationship (as
& Increases, y increases).
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GOOd F|‘t « One possible rule of thumb:

Range of r Strength Direction
Numeric Desc. 0.9to 1.0 Very Strong Positive
0.7t0 0.9 Strong Positive
0.5t0 0.7 Moderate Positive
0.3t0 0.5 Weak Positive
-0.3t0 0.3 Very Weak/No Relationship
-0.5t0-0.3 Weak Negative
-0.7 to -0.5 Moderate Negative
-0.9t0-0.7 Strong Negative
-1.0t0 -0.9 Very Strong Negative
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Good Fit

Numeric Desc.

Good linear fit OK linear fit Poar linear fit

The values of r from left to right are in the plot above are:
r=0.9998782 r=-0.8523543 r=-0.1347395

 In there first case the linear relationship is almost
perfect, and we would happily refer to this as a very
strong, positive relationship between x and y.

e In there second case the linear relationship is seems
appropriate - we could safely call it a strong, negative
linear relationship between x and y.

e In there third case the value of  indicates that there is
no linear relationship between the value of x and
the value of y. 7/ 48



Good F|‘t 1. Sample correlation (aka, sample linear correlation)
Example: Stress and Lifetime of Bars

Numeric DeSC.  we can use it to calculate the following values:
i z; = 200, i x? = 5412.5,

10 10 10
D Ty =484, y? = 25238, miy; = 8407.5,
i=1 i=1 i=1

and we can write:

Z?zl xT;Y; — nxTY

V(S w2 = na?) (S0, v? — ng?)

r =

8407.5 — 10(20)(48.5)
/(54125 — 10(20)?) (25238 — 10(48.4)7)

= —0.795

So we would say that stress applied and lifetime of the bar have a strong,
negative, linear relationship.
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GOOd F|‘t 2. Coeffecient of Determination (R?)

We know that our responses have variability - they are not
N icD always the same. We hope that the relationship between
umericuesc.  oyur response and our explanatory variables explains some
of the variability in our responses.

R? is the fraction of the total variability in the response (y)
accounted for by the fitted relationship.

« When R? is close to 1 we have explained almost all of
the variability in our response using the fitted
relationship (i.e., the fitted relationship is good).

« When R? is close to 0 we have explained almost none
of the variability in our response using the fitted
relationship (i.e., the fitted relationship is bad).

There are a number of ways we can calculate R?. Some

require you to know more than others or do more work by
hand.
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GOOd F|‘t 2. Calculating Coeffecient of Determination (R?
Method a. Using the data and our fitted relationship:

Numeric Desc.  ror an experiment with response values y;, Y2, . - - , Yn,
and fitted values g, ¥, . . . , §,, we calcuate the following:

i Wi — ) =i (i — 94)°
D1y —7)?

« This is the longest way to calculate R? by hand.

R =

e It requires you to know every response value in the
data (y;) and every fitted value (y,)

10/48



GOOd F|‘t 2. Calculating Coeffecient of Determination (R?
Method b. Using Sums of Squares

Numeric Desc.  ror an experiment with response values y;, Y2, . - - , Yn,
and fitted values g, ¥, . . . , §,, we calcuate the following:

e Total Sum of Squares (SSTO): a baseline for the
variability in our response.

SSTO =Y (ui — §)°
1=1

e Error Sum of Squares (SSE): The variability in the data
after fitting the line

SSE = z(yz —4;)°
i=1

e Regression Sum of Squares (SSR): The variability in
the data accounted for by the fitted relationship

SSR = S585TO — SSE
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GOOd F|‘t 2. Calculating Coeffecient of Determination (R?
Method b. Using Sums of Squares, continued
NUITIEI'IC DESC. We can write the R2 using these sums of squares:

~ SSR  SSTO-SSE - SSE
-~ SSTO SSTO B SSTO

e Q: What's the advantage of using the sums of squares?

R2

e A: The values of SSTO, SSE, and SSR are used in many
statistical calculations. Because of this, they are
commonly reported by statistical software. For
instance, fitting a model in JMP produces these as part
of the output.
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Good Fit

Numeric Desc.

2. Calculating Coeffecient of Determination (R?
Method c. A special case when the relationship is linear

If the relationship we fit between y and x is linear, then
we can use the sample correlation, r to get:

R* = (1)?

NOTE: Please, please, please, understand that this is only
true for linear relationships.
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Good Fit

Numeric Desc.

Example: Stress on Bars

stress

2. 2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0
(kg/mm")
ifetme .o oo o5 o1 g2 37 38 45 46 19
(hours)

Earlier, we found r = —0.795.

Since we are describing the relationship using a line, then
we can use the special case:

R? = (r)? = (—0.795)* = 0.633

In other words, 63.3% of the variability in the lifetime of
the bars can be explained by the linear relationship
between the stress the bars were placed under and the
lifetime.
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Section 4.2

Fitting Curves and Surfaces by Least Squares

Multiple Linear Regression



Fitting

Linear Relationships
Curves

e The idea of simple linear regression can be
MLR generalized to produce a powerful engineering tool:
Multiple Linear Regression (MLR).

» SLRis associated with line fitting

 MLR is associated with curve fitting and surface
fitting

« What we mean by multiple linear relationship is that
the relation between the variables and the response is
linear in their parameters.

o Multiple linear regression in general: when
there are more than one experimental variable in
the experiment

y = Bo + B1x1 + Baxa + - - + Brxk

o polynomial equation of order k:

y = Bo + Bix + Pox® + +F3x> + - + Bra® 1643



Fitting
Curves

MLR

Non-Linear Relationships

e And there are also non-linear relationship where the
relationship between the variables and the response is
non-linear in their parameters.

y=pfo+ez

B Bo

y—=—"0
B1 + Box
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Fitting

Anissue
Curves

« The point is that fitting curves and surfaces by the
MLR least square method needs a lot of matrix algebra
concepts and it is difficult to be done by hand.

e We need software to fit surfaces and curves.
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Example



Fitting
Curves

MLR

Example

Example: Compressive Strength of Fly Ash Cylinders as
a Function of Amount of Ammonium Phoshate Additive

Ammonium
Phosphate(%)

N NN == =0 O O

Compressive
Strength

(psi)

1221
1207
1187
1555
1562
1575
1827
1839
1802

Ammonium
Phosphate(%)

3
3
3
4
4
4
5
5
3

Compressive
Strength

(psi)

1609
1627
1642
1451
1472
1465
1321
1289
1292
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Fitting
Curves

MLR

1600

Strength

Example

1400

:
1200

Example: Compressive Strength of Fly Ash Cylinders as
a Function of Amount of Ammonium Phoshate Additive

2

Ammonium

3
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Fitting
Curves

MLR

1600

Strength

Example

1400

:
1200 s

Example: Compressive Strength of Fly Ash Cylinders as
a Function of Amount of Ammonium Phoshate Additive

¥=1500-0.638 x

2

Ammonium

3
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Fitting
Curves

Example: Compressive Strength of Fly Ash Cylinders as
a Function of Amount of Ammonium Phoshate Additive

end P 11902633 x 214 X2 18.3 3

1600

Strength

Example

1400

1200

Z 3
Ammonium
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One More Example in Fitting Surface and Curves



Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

A group of researchers are studying influences on the
hardness of a metal alloy. The researchers varied the
percent copper and tempering temperature, measuring
the hardness on the Rockwell scale.

The goal is to describe a relationship between our
response, Hardness, and our two experimental variables,
the percent copper (x1) and tempering temperature (x,).
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

Percent Copper Temperature Hardness

0.02

0.10

0.18

1000
1100
1200
1300
1000
1100
1200
1300
1000
1100
1200
1300

78.9
65.1
55.2
56.4
80.9
69.7
57.4
55.4
85.3
71.8
60.7
58.9
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy
Theoretical Relationship:

We start by writing down a theoretical relationship. With
one experimental variable, we may start with a line.
Extending that idea for two variables, we start with a
plane:

y = Bo + P1x1 + Paxo
Observed Relationship:

In our data, the true relationship will be shrouded in
error.

y = Bo + B1x1 + Boxs + errors

—

signal | + [noise]
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy
Fitted Relationship:

If we are right about our theoretical relationship, though,
and the signal-to-noise ratio is small, we might be able to
estimate the relationship:

gy = by + bix1 + boxo
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

Enter the data in JMP
[ JOX | untitled
~untitled 1 B
= percent_copper temperature hardness
1 0.02 1000 78.9
|- Columns (3/0) 2 0.02 1100 65.1
4perce...copper 3 0.02 1200 55.2
4temperature 4 0.02 1300 56.4
4hardness 5 0.1 1000 80.9
6 0.1 1100 69.7
|- Rows 7 0.1 1200 57.4
All rows 12 8 0.1 1300 55.4
Selected 0 9 0.18 1000 85.3
Excluded 0 10 0.18 1100 71.8
Hidden 0 11 0.18 1200 60.7
Labelled 0 12 0.18 1300 58.9
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

In JMP, go to Analyze > Fit Model to define the model

you are fitting:

@® [ ] Fit Model

M= Model Specification

Select Columns. Pick Role Variables

“3 Columns "'/ 4hardness
A percent_copper optional
A temperature
4 hardness Weight ‘optional numeric

e optional numeric

Validation

optional

s _I|optional

Construct Model Effects

Personal |ty Standard Least Squares

Emphasis- Minimal Report <)
Help Run
Recall Keep dialog open

Remove

Add percent_copper
Cross temperature
Nest
Macros v
Degree
Attributes ~

Transform =

No Intercept
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

After clicking Run we get the following model fit results:

untitled - Fit Least Squares

B e+ 00 p % =
- “Response hardness
> Effect Summary
*Summary of Fit
RSquare 0.899073
RSquare Adj 0.876645
Root Mean Square Error 3.790931
Mean of Response 66.30833
Observations (or Sum Wgts) 12
~ Analysis of Variance
Sum of
Source DF Squares Mean Square F Ratio
Model 2 1152.1888 576.094 40.0868
Error 9 129.3404 14.371 Prob >F
C. Total 11 1281.5292 <.0001*
~ Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 161.33646 11.43285 14.11 <.0001*
percent_copper 32.96875 16.75371 1.97 0.0806
temperature -0.0855 0.009788 -8.74 <.0001*
> Effect Tests

» Effect Details
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

From this output, we can get the value of R2, the
coeffecient of determination:

*Summary of Fit

RSquare 0.899073
RSquare Adj 0.876645
Root Mean Square Error 3.790931
Mean of Response 66.30833
Observations (or Sum Wgts) 12

Since R? = 0.899073, we can say

89.9074% of the variability in the hardness we
observed can be explained by its relationship
with temperature and percent copper.
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

From this output, we can get the sum of squares.

~ Analysis of Variance

Sum of
Source DF Squares Mean Square F Ratio
Model 2 1152.1888 576.094 40.0868
Error 9 129.3404 14.371 Prob>F
C. Total 11 1281.5292 <.0001*

This "Analysis of Variance" table has the same format
across almost all textbooks, journals, software, etc. In our
notation,

« SSR =1152.1888
« SSE =129.3404
e« SSTO = 1281.5292

We can use these for lots of purposes. In this class, we
have seen that we can get R?:

SSE ! 129.3404

SSTO — |~ 19815202  0-8990734

R2=1-
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

The parameter estimates give us the fitted values used in
our model:

 Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|
Intercept 161.33646 11.43285 14.11 <.0001*
percent_copper 32.96875 16.75371 1.97 0.0806
temperature -0.0855 0.009788 -8.74 <.0001"

Since we defined percent copper as x; earlier and
temperature as x2 then we can write:

y = 161.33646 + 32.96875 - 1 — 0.0855 - 2

We can use this to get fitted values. If we use temperature
of 1000 degrees and percent copper of 0.10 then we would
predict a hardness of
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

While our model looks pretty good, we still need to check a
few things involving residuals. We can save our residuals
from the model fit drop down and analyze them.

From Analyze > Distribution:

—
The distribution of values in each

column
Select Columns
"4 Columns v.coums | 4Residual hardness o
A percent_copper optional | G
A temperature
A hardness
A Residual hardness Weight \optional numeric ‘
METEY Fea__|[optional numeric ‘
optional
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Fitting Example: Hardness of Alloy
Curves

There aren't many residuals here (just 12) but we would
like to make sure that the histogram has rough bell-shape

MI_R (normal residuals are good). I would call this one
inconclusive.

EX ° a rd @® ® untitled - Distribution of Residual hardness
IR R AR »
.fl >~ % =

v ~Distributions

Al on - ©“Residual hardness

O ———=F—

LT

B <4 £ 0 2 <& @

> Quantiles
=“Summary Statistics

Mean 1.421e-14
Std Dev 3.4290261
Std Err Mean 0.9898746

Upper 95% Mean 2.1786992
Lower 95% Mean -2.178699
N 12
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

Another way to check if the residuals are approximately
normal is to compare the quantiles of our residuals to the

theoretical quantiles of the true normal distribution.

From the dropdown menu, choose Normal Quantile Plot to

get:

IR (=] o \ﬁv) E II
~ ~Distributions
- ~Residual hardness

o
o
o §
(&3]
Normal Quantile Plot

-6 -4 -2 0 2 4 6

> Quantiles
- =Summary Statistics
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

A 2?2 B @ O e i \ﬁ'} E E
~ ~Distributions
- ~Residual hardness

(o ]
[}
Normal Quantile Plot

6 4 ) 0 2 4 6

> Quantiles
- =Summary Statistics

« If the points all fall on the line, then the residuals have
the same spread as the normal distribution (i.e., the
residuals follow a bell-shape, which is what we want).

« If they stay within the curves, then we can say the
residuals follow a rough bell shape (which is good).

« If points fall outside the curves, our model has

problems (which is bad).
38 /48
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Fitting
Curves

MLR

Ex: Hard
Alloy

Transformation

Transformations: Fitting complicated relationships

Consider the simulated dataset 'transform.csv' in the
lecture module. Here's the scatterplot:

[ NON ) transform 2 - Fit Y by X of y by x

W e+ 92:erw [BET]

- - Bivariate Fit of y By x
9
8
7
6
y5
4
3
2
1
0 2 4 6 8 10
X
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Fitti"g Transformations: Fitting complicated relationships
Curves

MLR

Consider the residual plot you would get by trying to fit a
line. What would that look like?

Now consider the residual plot you would get by trying to
fit a quadratic. What would that look like?

EX: Hal'd What can we do about the size of the residuals??

AI |Oy We need a function that can both adjust the scale our
responses and account for the curve!!

Transformation
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Fitti"g Transformations: Fitting complicated relationships
Curves

One possible function that could do that: In(x).

MLR @® transform 2 - Fit Y by X of y by Log[x]

- ? B e @ 2P r (R

- Bivariate Fit of y By L.og[x]
Ex: Hard 3
Alloy

.
e 3%’
)

.
LI P

.
e

<
=N WHrArOILO N 00O

TranSformation 15 .-0.5; 0051 15225

Log[x]

Transforming our variables can allow us to get better fits,
but you need to be careful about the meaning of the
relationship. For instance, the slope now means "the
change in the response when the natural log of x is
increased by 1 - the relationship to x itself is not always

easy to translate back. 42 | 48
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Fitti"g Dangers in Fitting Relationships

Curves
Example: Stress and Lifetime of Bars
MI_R Consider the bars example again
stress
EX' Ha[d (kg/mm2) 2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0
A”Oy %fg;‘r‘;e 63 58 55 61 62 37 38 45 46 19

Da 1 gers |n Here's the linear fit:
Fits N

a O
= &

lifetime
N
o

Overfitting

N W
o ©

0 5 101520 25 30 35 40
stress 44 | 48



Fitting
Curves

MLR

Ex: Hard
Alloy

Dangers in
Fits

Overfitting

Dangers in Fitting Relationships

Example: Stress and Lifetime of Bars

G O
e S

lifetime
N
o

N W
= O

0 5 10152025 30 35 40
stress

The fitted line doesn't touch all the points, but we can push
our relationship further by adding (stress)?, (stress)3,

(stress)?, and so on.

Everytime we add a new term to the polynomial, we give
the fitted relationship the ability to make one more turn.

This leads to a problem called overfitting: our model is
just following the data, including the errors, instead of A5 / 48



Fitting
Curves

MLR

Ex: Hard
Alloy

Dangers in
Fits

Overfitting

Multicollinearity

Dangers in Fitting Relationships

Multicollinearity

Multicollinearity occurs when you have strongly
correlated experimental variables.

[ XON ] multicollinearity 2 - Scatterplot Matri ix
W 92Le P ®
- =Scatterplot Matrix

50
X2 20

%
L
Vel Pl

05 15 25 35 0 20 40 60 8005 15 25 35

O OUIUI0UI0 © OLIUIOLI

x
I
= —=NINWWH
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Fitting Dangers in Fitting Relationships

Curves
Multicollinearity
MLR Multicollinearity can lead to several problems:
e Since the variables are all related to each other, the
impact each variable has in the relationship to the
EX: Hal'd response becomes difficult to determine
A”  Since the disentangling the relationships is difficult,
Oy the estimates of the slopes for each variable become
very sensitive (different samples lead to very different
, estimates)
Da 1 gers IN  Since the correlated experimental variables will have
. similar relationships to the response, most of them are
F|tS not needed. Including them leads to an overfit.
Ultimately while it may look like a good fit on paper, the
OVEI'ﬁttiﬂ g model will be inaccurate.

Multicollinearity
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Fitting
Curves

MLR

Ex: Hard
Alloy

Wrapup

Finding the Best Fit

e Again, we can use the Least Squares principle to find
the best estimates, by, b1, and b,.

e The calculations are fairly advanced now that we have
three values to estimate,

» so these calculations are usually done in statistical
software (like JMP).

Judging The Fit

e Not all Theoretical Relationships we may imagine are
real!

« Perhaps a better relationship could be found using
y = Bo + Brz1 + B2 In(x2)

» We determine which relationships to try by examining
plots of the data, fit statistics (like R?), and plots of
residuals.

» Be careful of overfitting and multicollinearity (when
the experimental variables are correlated).
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