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Good Fit Knowing when a relationship �ts the data well

So far we have been fitting lines to describe our data. A
first question to ask may be something like:

Q: What kind of situations can a linear fit be used to
describe the relationship between an expreimental
variable and a response?

A: Any time both the experimental variable and the
response variable are numeric.

However all fits are not created the same:
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Good Fit

Numeric Desc.

Describing Fit Numerically

1. Sample correlation (aka, sample linear correlation)

For a sample consisting of data pairs , ,
, ... , the sample linear correlation, , is

defined by

which can also be written as

(x1, y1) (x2, y2)
(x3, y3) (xn, yn) r

r =
∑n

i=1(xi − x̄)(yi − ȳ)

√(∑n

i=1(xi − x̄)2) (∑n

i=1(yi − ȳ)2)

r =
∑n

i=1 xiyi − nx̄ȳ

√(∑n

i=1 x2
i

− nx̄2) (∑n

i=1 y2
i

− nȳ2)
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Good Fit

Numeric Desc.

1. Sample correlation (aka, sample linear correlation)

The value of  is always between -1 and +1.

The closer the value is to -1 or +1 the stronger the
linear relationship.

Negative values of  indicate a negative relationship
(as  increases,  decreases).

Positive values of  indicate a positive relationship (as 
 increases,  increases).

r

r
x y

r
x y
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Good Fit

Numeric Desc.

One possible rule of thumb:

Range of Strength Direction

0.9 to 1.0 Very Strong Positive

0.7 to 0.9 Strong Positive

0.5 to 0.7 Moderate Positive

0.3 to 0.5 Weak Positive

-0.3 to 0.3 Very Weak/No Relationship

-0.5 to -0.3 Weak Negative

-0.7 to -0.5 Moderate Negative

-0.9 to -0.7 Strong Negative

-1.0 to -0.9 Very Strong Negative

r
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Good Fit

Numeric Desc.

The values of  from left to right are in the plot above are:

          r=0.9998782       r=-0.8523543    r=-0.1347395

In there first case the linear relationship is almost
perfect, and we would happily refer to this as a very
strong, positive relationship between  and .

In there second case the linear relationship is seems
appropriate - we could safely call it a strong, negative
linear relationship between  and .

In there third case the value of  indicates that there is
no linear relationship between the value of  and
the value of .

r

x y

x y
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Good Fit

Numeric Desc.

1. Sample correlation (aka, sample linear correlation)

Example: Stress and Lifetime of Bars

We can use it to calculate the following values:

and we can write:

So we would say that stress applied and lifetime of the bar have a strong,
negative, linear relationship.

10

∑
i=1

xi = 200,
10

∑
i=1

x2
i

= 5412.5,

10

∑
i=1

yi = 484,
10

∑
i=1

y2
i

= 25238,
10

∑
i=1

xiyi = 8407.5,

r =

=

= −0.795

∑n

i=1 xiyi − nx̄ȳ

√(∑n

i=1 x2
i − nx̄2) (∑n

i=1 y2
i − nȳ2)

8407.5 − 10(20)(48.5)

√(5412.5 − 10(20)2) (25238 − 10(48.4)2)
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Good Fit

Numeric Desc.

2. Coeffecient of Determination ( )

We know that our responses have variability - they are not
always the same. We hope that the relationship between
our response and our explanatory variables explains some
of the variability in our responses.

 is the fraction of the total variability in the response ( )
accounted for by the fitted relationship.

When  is close to 1 we have explained almost all of
the variability in our response using the fitted
relationship (i.e., the fitted relationship is good).

When  is close to 0 we have explained almost none
of the variability in our response using the fitted
relationship (i.e., the fitted relationship is bad).

There are a number of ways we can calculate . Some
require you to know more than others or do more work by
hand.

R2

R2 y

R2

R2

R2
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Good Fit

Numeric Desc.

2. Calculating Coeffecient of Determination ( )

Method a. Using the data and our fitted relationship:

For an experiment with response values 
and fitted values  we calcuate the following:

This is the longest way to calculate  by hand.

It requires you to know every response value in the
data ( ) and every fitted value ( )

R2

y1, y2, … , yn

ŷ1, ŷ2, … , ŷn

R2 =
∑n

i=1(yi − ȳ)2 −∑n

i=1(yi − ŷ i)
2

∑n

i=1(yi − ȳ)2

R2

yi ŷ i
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Good Fit

Numeric Desc.

2. Calculating Coeffecient of Determination ( )

Method b. Using Sums of Squares

For an experiment with response values 
and fitted values  we calcuate the following:

Total Sum of Squares (SSTO): a baseline for the
variability in our response.

Error Sum of Squares (SSE): The variability in the data
after fitting the line

Regression Sum of Squares (SSR): The variability in
the data accounted for by the fitted relationship

R2

y1, y2, … , yn

ŷ1, ŷ2, … , ŷn

SSTO =
n

∑
i=1

(yi − ȳ)2

SSE =
n

∑
i=1

(yi − ŷ i)
2

SSR = SSTO − SSE
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Good Fit

Numeric Desc.

2. Calculating Coeffecient of Determination ( )

Method b. Using Sums of Squares, continued

We can write the  using these sums of squares:

Q: What's the advantage of using the sums of squares?

A: The values of SSTO, SSE, and SSR are used in many
statistical calculations. Because of this, they are
commonly reported by statistical software. For
instance, fitting a model in JMP produces these as part
of the output.

R2

R2

R2 = = = 1 −
SSR

SSTO

SSTO − SSE

SSTO

SSE

SSTO
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Good Fit

Numeric Desc.

2. Calculating Coeffecient of Determination ( )

Method c. A special case when the relationship is linear

If the relationship we fit between  and  is linear, then
we can use the sample correlation,  to get:

NOTE: Please, please, please, understand that this is only
true for linear relationships.

R2

y x
r

R2 = (r)2
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Good Fit

Numeric Desc.

Example: Stress on Bars

stress 
2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0

lifetime
(hours)

63 58 55 61 62 37 38 45 46 19

Earlier, we found .

Since we are describing the relationship using a line, then
we can use the special case:

In other words, 63.3% of the variability in the lifetime of
the bars can be explained by the linear relationship
between the stress the bars were placed under and the
lifetime.

(kg/mm
2
)

r = −0.795

R2 = (r)2 = (−0.795)2 = 0.633
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Section 4.2Section 4.2

Fitting Curves and Surfaces by Least SquaresFitting Curves and Surfaces by Least Squares

Multiple Linear RegressionMultiple Linear Regression
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Fitting
Curves

MLR

Linear Relationships
The idea of simple linear regression can be
generalized to produce a powerful engineering tool:
Multiple Linear Regression (MLR).

SLR is associated with line fitting

MLR is associated with curve fitting and surface
fitting

What we mean by multiple linear relationship is that
the relation between the variables and the response is
linear in their parameters.

Multiple linear regression in general: when
there are more than one experimental variable in
the experiment

polynomial equation of order k:

y = β0 + β1x1 + β2x2 + ⋯ + βkxk

y = β0 + β1x + β2x2 + +β3x3 + ⋯ + βkxk
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Fitting
Curves

MLR

Non-Linear Relationships
And there are also non-linear relationship where the
relationship between the variables and the response is
non-linear in their parameters.

y = β0 + eβ1x

y =
β0

β1 + β2x
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Fitting
Curves

MLR

An issue
The point is that fitting curves and surfaces by the
least square method needs a lot of matrix algebra
concepts and it is difficult to be done by hand.

We need software to fit surfaces and curves.
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ExampleExample

19 / 4819 / 48



Fitting
Curves

MLR

Example

Example: Compressive Strength of Fly Ash Cylinders as
a Function of Amount of Ammonium Phoshate Additive

Ammonium
Phosphate(%)

Compressive
Strength

(psi)

Ammonium
Phosphate(%)

Compressive
Strength

(psi)

0 1221 3 1609

0 1207 3 1627

0 1187 3 1642

1 1555 4 1451

1 1562 4 1472

1 1575 4 1465

2 1827 5 1321

2 1839 5 1289

2 1802 3 1292
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Fitting
Curves

MLR

Example

Example: Compressive Strength of Fly Ash Cylinders as
a Function of Amount of Ammonium Phoshate Additive

21 / 48



Fitting
Curves

MLR

Example

Example: Compressive Strength of Fly Ash Cylinders as
a Function of Amount of Ammonium Phoshate Additive
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Fitting
Curves

MLR

Example

Example: Compressive Strength of Fly Ash Cylinders as
a Function of Amount of Ammonium Phoshate Additive
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One More Example in One More Example in Fitting Surface and CurvesFitting Surface and Curves
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

A group of researchers are studying influences on the
hardness of a metal alloy. The researchers varied the
percent copper and tempering temperature, measuring
the hardness on the Rockwell scale.

The goal is to describe a relationship between our
response, Hardness, and our two experimental variables,
the percent copper ( ) and tempering temperature ( ).x1 x2
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

Percent Copper Temperature Hardness

0.02 1000 78.9

1100 65.1

1200 55.2

1300 56.4

0.10 1000 80.9

1100 69.7

1200 57.4

1300 55.4

0.18 1000 85.3

1100 71.8

1200 60.7

1300 58.9
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

Theoretical Relationship:

We start by writing down a theoretical relationship. With
one experimental variable, we may start with a line.
Extending that idea for two variables, we start with a
plane:

Observed Relationship:

In our data, the true relationship will be shrouded in
error.

y = β0 + β1x1 + β2x2

y = β0 + β1x1 + β2x2 + errors

= [        signal       ] + [noise]
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

Fitted Relationship:

If we are right about our theoretical relationship, though,
and the signal-to-noise ratio is small, we might be able to
estimate the relationship:

ŷ = b0 + b1x1 + b2x2
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

Enter the data in JMP
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

In JMP, go to Analyze > Fit Model to define the model
you are fitting:
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

After clicking Run we get the following model fit results:
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

From this output, we can get the value of , the
coeffecient of determination:

Since , we can say

89.9074% of the variability in the hardness we
observed can be explained by its relationship
with temperature and percent copper.

R2

R2 = 0.899073
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

From this output, we can get the sum of squares.

This "Analysis of Variance" table has the same format
across almost all textbooks, journals, software, etc. In our
notation,

We can use these for lots of purposes. In this class, we
have seen that we can get :

SSR = 1152.1888
SSE = 129.3404
SSTO = 1281.5292

R2

R2 = 1 − = 1 − = 0.8990734
SSE

SSTO

129.3404

1281.5292
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

The parameter estimates give us the fitted values used in
our model:

Since we defined percent copper as  earlier and
temperature as  then we can write:

We can use this to get fitted values. If we use temperature
of 1000 degrees and percent copper of 0.10 then we would
predict a hardness of

x1
x2

ŷ = 161.33646 + 32.96875 ⋅ x1 − 0.0855 ⋅ x2
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

While our model looks pretty good, we still need to check a
few things involving residuals. We can save our residuals
from the model fit drop down and analyze them.

From Analyze > Distribution:
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

There aren't many residuals here (just 12) but we would
like to make sure that the histogram has rough bell-shape
(normal residuals are good). I would call this one
inconclusive.
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

Another way to check if the residuals are approximately
normal is to compare the quantiles of our residuals to the
theoretical quantiles of the true normal distribution.

From the dropdown menu, choose Normal Quantile Plot to
get:
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Fitting
Curves

MLR

Ex: Hard
Alloy

Example: Hardness of Alloy

If the points all fall on the line, then the residuals have
the same spread as the normal distribution (i.e., the
residuals follow a bell-shape, which is what we want).
If they stay within the curves, then we can say the
residuals follow a rough bell shape (which is good).
If points fall outside the curves, our model has
problems (which is bad).
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TransformationsTransformations
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Fitting
Curves

MLR

Ex: Hard
Alloy

Transformation

Transformations: Fitting complicated relationships

Consider the simulated dataset 'transform.csv' in the
lecture module. Here's the scatterplot:
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Fitting
Curves

MLR

Ex: Hard
Alloy

Transformation

Transformations: Fitting complicated relationships

Consider the residual plot you would get by trying to fit a
line. What would that look like?

Now consider the residual plot you would get by trying to
fit a quadratic. What would that look like?

What can we do about the size of the residuals??

We need a function that can both adjust the scale our
responses and account for the curve!!
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Fitting
Curves

MLR

Ex: Hard
Alloy

Transformation

Transformations: Fitting complicated relationships

One possible function that could do that: .

Transforming our variables can allow us to get better fits,
but you need to be careful about the meaning of the
relationship. For instance, the slope now means "the
change in the response when the natural log of x is
increased by 1 - the relationship to  itself is not always
easy to translate back.

ln(x)

x
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Dangers in FitsDangers in Fits
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Fitting
Curves

MLR

Ex: Hard
Alloy

Dangers in
Fits

Over�tting

Dangers in Fitting Relationships

Example: Stress and Lifetime of Bars

Consider the bars example again

stress 
2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0

lifetime
(hours)

63 58 55 61 62 37 38 45 46 19

Here's the linear fit:

(kg/mm
2
)
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Fitting
Curves

MLR

Ex: Hard
Alloy

Dangers in
Fits

Over�tting

Dangers in Fitting Relationships

Example: Stress and Lifetime of Bars

The fitted line doesn't touch all the points, but we can push
our relationship further by adding , , 

, and so on.

Everytime we add a new term to the polynomial, we give
the fitted relationship the ability to make one more turn.

This leads to a problem called overfitting: our model is
just following the data, including the errors, instead of

(stress)2 (stress)3

(stress)4
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Fitting
Curves

MLR

Ex: Hard
Alloy

Dangers in
Fits

Over�tting

Multicollinearity

Dangers in Fitting Relationships

Multicollinearity

Multicollinearity occurs when you have strongly
correlated experimental variables.
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Fitting
Curves

MLR

Ex: Hard
Alloy

Dangers in
Fits

Over�tting

Multicollinearity

Dangers in Fitting Relationships

Multicollinearity

Multicollinearity can lead to several problems:

Since the variables are all related to each other, the
impact each variable has in the relationship to the
response becomes difficult to determine
Since the disentangling the relationships is difficult,
the estimates of the slopes for each variable become
very sensitive (different samples lead to very different
estimates)
Since the correlated experimental variables will have
similar relationships to the response, most of them are
not needed. Including them leads to an overfit.

Ultimately while it may look like a good fit on paper, the
model will be inaccurate.
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Fitting
Curves

MLR

Ex: Hard
Alloy

Wrapup

Finding the Best Fit

Again, we can use the Least Squares principle to find
the best estimates, , , and .

The calculations are fairly advanced now that we have
three values to estimate,

so these calculations are usually done in statistical
software (like JMP).

Judging The Fit

Not all Theoretical Relationships we may imagine are
real!

Perhaps a better relationship could be found using

We determine which relationships to try by examining
plots of the data, fit statistics (like ), and plots of
residuals.

Be careful of overfitting and multicollinearity (when
the experimental variables are correlated).

b0 b1 b2

y = β0 + β1x1 + β2 ln(x2)

R2
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