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Info

Reminder:
RVs

General Info About Discrete RVs

Reminder: What is a Random Variable?

Random Variables, we have already defined, take real-
numbered (  ) values based on outcomes of a random
experiment.

If we know the outcome, we know the value of the
random variable (so that isn't the random part).
However, before we perform the experiment we do
not know the outcome - we can only make statements
about what the outcome is likely to be (i.e., we make
"probabilistic" statements).
In the same way, we do not know the value of the
random variable before the experiment, but we can
make probability statements about what value the RV
might take.

R
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Common Terms and Notation for Discrete RVs

Of course, we can't introduce a sort of new concept
without introducing a whole lot of new terminology.

We use capital letters to refer to discrete random
variables: , , , ...

We use lower case letters to refer to values the discrete
RVs can take: , , , , ...

While we can use  to refer to the probability
that the discrete random variable takes the value , we
usually use what we call the probability function:

For a discrete random variable , the probability
function  takes the value 

In otherwords, we just write  instead of 
.

X Y Z

x x1 y z

P(X = x)
x

X
f(x) P(X = x)

f(x)
P(X = x)
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Common Terms and Notation for Discrete RVs

We also have another function related to the probabilities,
called the cumulative probability function.

For a discrete random variable  taking values 
the CDF or cumulative probability function of , ,
is defined as

Which in other words means that for any value ,

and

X x1, x2, . . .
X F(x)

F(x) = ∑
z≤x

f(z)

x

f(x) = P(X = x)

F(x) = P(X ≤ x)
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Common Terms and Notation for Discrete RVs (cont)

The values that  can take and the probabilities attached
to those values are called the probability distribution of 

 (since we are talking about how the total probability 1
gets spread out on (or distributed to) the values that  can
take).

Example

Suppose that the we roll a die and let  be the number of
dots facing up. Define the probability distribution of .
Find  and .

X

X
X

T
T

f(3) F(6)
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Example: [Torque]

Let  the torque, rounded to the nearest integer,
required to loosen the next bolt on an apparatus.

Z 11 12 13 14 15 16 17 18 19 20

f(z) 0.03 0.03 0.03 0.06 0.26 0.09 0.12 0.20 0.15 0.03

Calculate the following probabilities:

Z =

P(Z ≤ 14)

P(Z > 16)

P(Z is even)

P(Z ∈ {15, 16, 18})
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Example: [Torque]

Z 11 12 13 14 15 16 17 18 19 20

f(z) 0.03 0.03 0.03 0.06 0.26 0.09 0.12 0.20 0.15 0.03

 

 

 

 

P(Z ≤ 14)

P(Z > 16)
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Example: [Torque]

Z 11 12 13 14 15 16 17 18 19 20

f(z) 0.03 0.03 0.03 0.06 0.26 0.09 0.12 0.20 0.15 0.03

 

 

 

 

P(Z is even)

P(Z ∈ {15, 16, 18})
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More on CDF

The cumulative probability distribution (cdf) for
a random variable  is a function  that
for each number  gives the probability that 
takes that value or a smaller one, 

.

Since (for discrete distributions) probabilities are
calculated by summing values of ,

X F(x)
x X

F(x) = P [X ≤ x]

f(x)

F(x) = P [X ≤ x] = ∑
y≤x

f(y)
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More on CDF

Properties of a mathematically valid cumulative
distribution function:

 for all real numbers 

 is monotonically increasing

 is right continuous

 and 

This means that  for any CDF

In the discrete cases, the graph of  will be
n stair-step graph with jumps at possible values
of our random variable and height equal to the
probabilities associated with those values

F(x) ≥ 0 x

F(x)

F(x)

limx→−∞ F(x) = 0 limx→+∞ F(x) = 1

0 ≤ F(x) ≤ 1

F(x)
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More on CDF

Example: [Torque] Let  the torque, rounded to the
nearest integer, required to loosen the next bolt on an
apparatus.

Z 11 12 13 14 15 16 17 18 19 20

f(z) 0.03 0.03 0.03 0.06 0.26 0.09 0.12 0.20 0.15 0.03

Z =
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More on CDF

Calculate the following probabilities using the cdf only:

  

 

 

 

 

 

F(10.7)

P(Z ≤ 15.5)

P(12.1 < Z ≤ 14)

P(15 ≤ Z < 18)
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More on CDF

One more example

Say we have a random variable  with pmf:

q     f(q)    

1     0.34    

2     0.10    

3     0.22    

7     0.34    

Draw the CDF

Q
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Summaries

Almost all of the devices for describing relative frequency
(empirical) distributions in Ch. 3 have versions that can
describe (theoretical) probability distributions.

1. Measures of location == Mean

2. Measures of spread == variance

3. Histogram == probability histograms based on
theoretical probabilities
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Mean of a Discrete Random Variable

For a discrete random varable, , which can take values 
 we define the mean of X (also known as the

expected value of X) as:

We often use the symbol  instead of .

Also, just to be confusing, you will often see  instead of
. Use context clues.

Example:

Suppose that the we roll a die and let  be the number of
dots facing up. Find the expected value of .

X
x1, x2, . . .

E(X) =
n

∑
i=1

xi ⋅ f(xi)

μ E(X)

EX
E(X)

T
T
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Variance of a Discrete Random Variable

For a discrete random varable, , which can take values 
 and has mean  we define the variance of 

as:

There are other usefule ways to write this, most
importantly:

which is the same as

X
x1, x2, . . . μ X

V ar(X) =
n

∑
i=1

(xi − μ)2 ⋅ f(xi)

V ar(X) =
n

∑
i=1

x2
i

⋅ f(xi) − μ2

VarX = ∑
x

(x − EX)2f(x) = E(X2) − (EX)2.
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Variance of a Discrete Random Variable

Example:

Suppose that the we roll a die and let  be the number of
dots facing up. What is the variance of ?

T

T
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Variance of a Discrete Random Variable

Example

Say we have a random variable  with pmf:

q     f(q)    

1     0.34    

2     0.10    

3     0.22    

7     0.34    

Find the variance and standard deviation

Q
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Discrete Random Variables

Discrete RVs are RVs that will take one of a countable
set of values.

When working with a discrete random variable, it is
common to need or use the RV's

probability distribution: the values the RV can
take and their probabilities

probability function: a function where 

cumulative probability function: a function where
.

mean: a value for  defined by 

variance: a value for  defined by 

f(x) = P(X = x)

F(x) = P(X ≤ x)

X
EX = ∑

x
x ⋅ f(x)

X
V arX = ∑x(x − μ)2 ⋅ f(x) 21 / 65
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Why Are Some Distributions Worth Naming?

Even though you may create a random variable in a
unique scenario, the way that it's probability distribution
behaves (mathematically) may have a lot in common with
other random variables in other scenarios. For instance,

I roll a die until I see a 6 appear and then stop. I
call  the number of times I have to roll the die
in total.

I flip a coin until I see heads appear and then
stop. I call  the number of times I have to flip
the coin in total.

I apply for home loans until I get accepted and
then I stop. I call  the number of times I have
to apply for a loan in total.

X

Y

Z
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Why Are Some Distributions Worth Naming? (cont)

In each ot the above cases, we count the number of times
we have to do some action until we see some specific
result. The only thing that really changes from the random
variables perspective is the likelyhood that we see the
specific result each time we try.

Mathematically, that's not a lot of difference. And if we can
really understand the probability behavior of one of these
scenarios then we can move our understanding to the
different scenario pretty easily.

By recognizing the commonality between these scenarios,
we have been able to identify many random variables that
behave very similarly. We describe the similarity in the
way the random variables behave by saying that they have
a common/shared distribution.

We study the most useful ones by themselves.
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The Bernoulli Distribution

Origin: A random experiment is performed that results in
one of two possible outcomes: success or failure. The
probability of a successful outcome is .

Definition:  takes the value 1 if the outcome is a success.
 takes the value 0 if the outcome is a failure.

probability function:

which can also be written as

p

X
X

f(x) =
⎧
⎨⎩

p x = 1,
1 − p x = 0,
0 o. w.

‘

f(x) = { px(1 − p)1−x x = 0, 1

0 o. w.
‘
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Bernoulli DistributionBernoulli Distribution
Expected Value and VarianceExpected Value and Variance
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The Bernoulli Distribution

Expected value: E(X) = p
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The Bernoulli Distribution

Variance: V ar(X) = (1 − p) ⋅ p
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The Bernoulli Distribution

A few useful notes:

In order to say that "  has a bernoulli distribution
with success probability  " we write 

Trials which results in which the only possible
outcomes are "success" or "failure" are called
Bernoulli Trials

The value  is the Bernoulli distribution's parameter.
We don't treat parameters like random values - they
are fixed, related to the real process we are studying.

"Success" does not mean something we would
perceive as "good" has happened. It just means the
outcome we were watching for was the outcome we
got.

Please note: we have two outcomes, but the
probability for each outcome is not the same (duh!).

X
p

X ∼ Bernoulli(p)

p
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The Binomial Distribution

Origin: A series of  independent random experiments, or
trials, are performed. Each trial results in one of two
possible outcomes: successful or failure. The probability of
a successful outcome, , is the same across all trials.

Definition: For  trials,  is the number of trials with a
successful outcome.  can take values .

probability function:

With ,

`

where  and .

n

p

n X
X 0, 1, … , n

0 < p < 1

f(x) =
⎧
⎨⎩

px(1 − p)n−x x = 0, 1, … , n

0 o. w.

n!

x!(n − x)!

n! = n ⋅ (n − 1) ⋅ (n − 2) ⋅ … ⋅ 1 0! = 1
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Examples of Binomial Distribution

Number of hexamine pallets in a batch of 
 total pallets made from a

palletizing machine that conform to some
standard.

Number of runs of the same chemical
process with percent yield above  given
that you run the process 1000 times.

Number of winning lottery tickets when
you buy 10 tickets of the same kind.

n = 50

80
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The Binomial Distribution

Plots of Binomial distribution based on different success
probabilities and sample sizes.
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The Binomial Distribution

Example [10 component machine]

Suppose you have a machine with 10 independent
components in series. The machine only works if all the
components work. Each component succeeds with
probability  and fails with probability 

.

Let  be the number of components that succeed in a
given run of the machine. Then

Question: what is the probability of the machine working
properly?

p = 0.95
1 − p = 0.05

Y

Y ∼ Binomial(n = 10, p = 0.95)
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The Binomial Distribution

Example [10 component machine]

What if I arrange these 10 components in parallel? This
machine succeeds if at least 1 of the components succeeds.

What is the probability that the new machine succeeds?

Y ∼ Binomial(n = 10, p = 0.95)
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Binomial DistributionBinomial Distribution
Expected Value and VarianceExpected Value and Variance
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The Binomial Distribution

Expected value:

 

Variance:

E(X) = n ⋅ p

V ar(X) = n ⋅ (1 − p) ⋅ p
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The Binomial Distribution

Example [10 component machine]

Calculate the expected number of components to succeed
and the variance.
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The Binomial Distribution

A few useful notes:

In order to say that "  has a binomial distribution
with  trials and success probability " we write 

If  are  independent Bernoulli
random variables with the same  then 

 is a binomial random
variable with  trials and success probability .

Again,  and  are referred to as "parameters" for the
Binomial distribution. Both are considered fixed.

Don't focus on the actual way we got the expected
value - focus on the trick of trying to get part of your
complicated summation to "go away" by turning it into
the sum of a probability function.

X
n p

X ∼ Binomial(n, p)

X1, X2, … , Xn n
p

X = X1 + X2 + … + Xn

n p

n p
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The Geometric Distribution

Origin: A series of independent random experiments, or
trials, are performed. Each trial results in one of two
possible outcomes: successful or failure. The probability of
a successful outcome, , is the same across all trials. The
trials are performed until a successful outcome is
observed.

Definition:  is the trial upon which the first successful
outcome is observed.  can take values .

probability function:

With ,

p

X
X 1, 2, …

0 < p < 1

f(x) = { p(1 − p)x−1 x = 1, 2, . . .

0 o. w.
‘
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Examples of Geometric Distribution

Number of rolls of a fair die until you land
a 5

Number of shipments of raw materials you
get until you get a defective one (success
does not need to have positive meaning)

Number of car engine starts untill the
battery dies.

45 / 65



Common
Distributions

Background

Bernoulli

Binomial

Geometric

Shape of Geometric Distribution

The probability of observing the first success
decreases as the number of trials
increases(even at a faster rate as  increases)p
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The Geometric Distribution

Cumulative probability function: 

Here's how we get that cumulative probability function:

The probability of a failed trial is .
The probability the first trial fails is also just .
The probability that the first two trials both fail is 

.
The probability that the first  trials all fail is 
.
This gets us to this math:

F(x) = 1 − (1 − p)x

1 − p
1 − p

(1 − p) ⋅ (1 − p) = (1 − p)2

x (1 − p)x

F(x) = P(X ≤ x)

= 1 − P(X > x)

= 1 − (1 − p)x
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The Geometric Distribution

Expected value:

Variance:

E(X) =
1

p

V ar(X) =
1 − p

p2
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Example

NiCad batteries: An experimental program was
successful in reducing the percentage of manufactured
NiCad cells with internal shorts to around . Let  be
the test number at which the first short is discovered.
Then, .

Calculate

 

 

 

1% T

T ∼ Geom(p)

P(1st or 2nd cell tested has the 1st short)

P(at least 50 cells tested without finding a short)
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NiCad batteries:

Calculate the expected test number at which the first short
is discovered and the variance in test numbers at which
the first short is discovered.
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Example

A shipment of 200 widgets arrives from a new widget
distributor. The distributor has claimed that the widgets
there is only a 10% defective rate on the widgets. Let  be
the random variable asociated with the number of trials
untill finding the first defective widgets.

What is the probability distribution associated with
this random variable ? Precisely specify the
parameter(s).

 

How many widgets would you expect to test before
finding the first defective widget?

X

X
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You find your first defective widget while testing the thrid
widget.

What is the probability that a the first defective widget
would be found on the third test if there are only 10%
defective widgets from in the shipment?

P(x = 3) = p(1 − p)x−1

= 0.1(1 − 0.1)3−1

= 0.1(0.9)2 = 0.081
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What is the probability that a the first defective widget
would be found by the third test if there are only 10%
defective widgets from in the shipment?

P(x ≤ 3) = FX(3) = 1 − (1 − p)3

= 1 − (1 − .1)3

= 1 − (0.9)3 = 0.271
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The Poisson Distribution

Origin: A rare occurance is watched for over a specified
interval of time or space.

It's often important to keep track of the total number of
occurrences of some relatively rare phenomenon.

Definition

Consider a variable

X : the count of occurences of a phenomenon
across a specified interval of time or space

or

X: the number of times the rare occurance is
observed
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The Poisson Distribution

probability function:

The Poisson$(\lambda)$ distribution is a discrete
probability distribution with pmf

For 

f(x) =

⎧⎪ ⎪
⎨
⎪ ⎪⎩

x = 0, 1, . . .

0 o. w.

e−λλx

x!

λ > 0
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The Poisson Distribution

These occurrences must:

be independent
be sequential in time ( no two occurances at once)
occur at the same constant rate 

 the rate parameter, is the expected number of
occurances in the specified interval of time or space (i.e 

)

λ

λ

E(X) = λ
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The Poisson Distribution

Examples that could follow a Poisson$(\lambda)$
distribution :

 is the number of shark attacks off the coast
of CA next year,  attacks per year 

 is the number of shark attacks off the coast
of CA next month,  attacks per
month 

 is the number of -particles emitted from a
small bar of polonium, registered by a counter
in a minute,  particles per minute

 is the number of particles per hour, 
 particles per

hour.

Y

λ = 100

Z

λ = 100/12

N α

λ = 459.21

J

λ = 459.21 ∗ 60 = 27, 552.6
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The Poisson Distribution

Right skewed with peak near λ
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The Poisson Distribution

For  a Poisson$(\lambda)$ random variable,X

μ = EX =
∞

∑
x=0

x = λ

σ2 = VarX =
∞

∑
x=0

(x − λ)2 = λ

e−λλx

x!

e−λλx

x!
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Example

Arrivals at the library

Some students' data indicate that between 12:00 and
12:10pm on Monday through Wednesday, an average of
around 125 students entered Parks Library at ISU.
Consider modeling

M : the number of students entering the ISU
library between 12:00 and 12:01pm next
Tuesday

Model . What would a reasonable choice
of  be?

M ∼ Poisson(λ)
λ
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Example

Arrivals at the library

Under this model, the probability that between  and 
students arrive at the library between 12:00 and 12:01 PM
is:

10 15
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Shark attacks

Let  be the number of unprovoked shark attacks that
will occur off the coast of Florida next year. Model

From the shark data at
http://www.flmnh.ufl.edu/fish/sharks/statistics/FLactivity.htm,
246 unprovoked shark attacks occurred from 2000 to 2009.

What would a reasonable choice of  be?

X

X ∼ Poisson(λ).

λ
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Shark attacks

Under this model, calculate the following:

 

 

 

 

 

 

P(no attacks next year)

P(at least 5 attacks)

P(more than 10 attacks)
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