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Joint
Distributions Joint Distributions

We often need to consider two random variables together -
for instance, we may consider

the length and weight of a squirrel,
the loudness and clarity of a speaker,
the blood concentration of Protein A, B, and C and so
on.

This means that we need a way to describe the probability
of two variables jointly. We call the way the probability is
simultaneously assigned the "joint distribution".
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Joint
Distributions

Discrete RVs

Joint distribution of discrete random variables

For several discrete random variable, the device typically
used to specify probabilities is a joint probability function.
The two-variable version of this is defined.

A joint probability function (joint pmf) for
discrete random variables  and  is a
nonnegative function , giving the
probability that (simultaneously)  takes the
values  and  takes the values . That is,

Properties of a valid joint pmf:

 for all 

X Y
f(x, y)

X
x Y y

f(x, y) = P [X = x and Y = y]

f(x, y) ∈ [0, 1] x, y

∑
x,y f(x. y) = 1
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Joint
Distributions

Discrete RVs

Joint distribution of discrete random variables

So we have probability functions for , probability
functions for  and now a probability function for  and 

 together - that's a lot of s floating around though! In
order to be clear which function we refer to when we
refer to , we also add some subscripts

Suppose  and  are two discrete random variables.

we may need to identify the joint probability function
using ,

we may need to identify the probability function of 
by itself (aka the marginal probability function for )
using ,

we may need to identify the probability function of 
by itself (aka the marginal probability function for )
using 

X
Y X

Y f

" f "

X Y

fXY (x, y)

X
X

fX(x)

Y
Y

fY (y)
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Joint
Distributions

Discrete RVs

Joint pmf

For the discrete case, it is useful to give  in a table.

Two bolt torques, cont'd

Recall the example of measure the bolt torques on the face
plates of a heavy equipment component to the nearest
integer. With

f(x, y)

X = the next torque recorded for bolt 3

Y = the next torque recorded for bolt 4
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Joint
Distributions

Discrete RVs

Joint pmf

the joint probability function, , isf(x, y)
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Joint
Distributions

Discrete RVs

Calculate:

 

 

P [X = 14 and Y = 19]

P [X = 18 and Y = 17]
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Joint
Distributions

Discrete RVs

By summing up certain values of , probabilities
associated with  and  with patterns of interest can be
obtained.

Consider: 

 

f(x, y)
X Y

P(X ≥ Y )
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Joint
Distributions

Discrete RVs

 

P(|X − Y | ≤ 1)

10 / 45



Joint
Distributions

Discrete RVs

 

P(X = 17)
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Marginal DistributionMarginal Distribution
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Joint
Distributions

Discrete RVs

Marginal distributions

In a bivariate problem, one can add down columns in the
(two-way) table of  to get values for the probability
function of ,  and across rows in the same table to
get values for the probability distribution of , .

The individual probability functions for discrete random
variables  and  with joint probability function 
are called marginal probability functions. They are
obtained by summing  values over all possible
values of the other variable.

f(x, y)
X fX(x)

Y fY (y)

X Y f(x, y)

f(x, y)
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Joint
Distributions

Discrete RVs

Connecting Joint and Marginal Distributions

Use: Joint to Marginal for Discrete RVs

Let  and  be discrete random variables with
joint probability function Then the marginal
probability function for  can be found by:

and the marginal probability function for 
can be found by:

`

X Y

X

fX(x) =∑
y

fXY (x, y)

Y

fY (y) =∑
x

fXY (x, y)
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Joint
Distributions

Discrete RVs

Example: [Torques, cont'd]

Find the marginal probability functions for  and  from
the following joint pmf.

X Y
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Joint
Distributions

Discrete RVs

Getting marginal probability functions from joint
probability functions begs the question whether the
process can be reversed.

Can we find joint probability functions from
marginal probability functions?

16 / 45



Conditional DistributionConditional Distribution
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Joint
Distributions

Discrete RVs

Conditional
Distribution

Conditional Distribution of Discrete Random
Variables

When working with several random variables, it is often
useful to think about what is expected of one of the
variables, given the values assumed by all others.

For discrete random variables  and  with
joint probability function , the
conditional probability function of  given 

 is a function of 

and the conditional probability function of 
given  is a function of 

X Y
f(x, y)

X
Y = y x

fX|Y (x|y) = =
f(x, y)

fY (y)

f(x, y)

∑
x

f(x, y)

Y
X = x y

fY |X(y|x) = = .
f(x, y)

fX(x)

f(x, y)

∑
y

f(x, y)
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Joint
Distributions

Discrete RVs

Conditional
Distribution

Example: [Torque, cont'd]

Find the following probabilities:

fY |X(20|18)
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Joint
Distributions

Discrete RVs

Conditional
Distribution

Example: [Torque, cont'd]

 

 

 

 

 

 

fY |X(y|15)

fY |X(y|20)

fX|Y (x|18)
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IndependenceIndependence
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Joint
Distributions

Discrete RVs

Conditional
Distribution

Independence

Let's start with an example. Look at the following joint
probability distribution and the associated marginal
probabilities.

What do you notice?
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Joint
Distributions

Discrete RVs

Conditional
Distribution

Independence

Discrete random variables  and  are independent if
their joint distribution function  is the product of
their respective marginal probability functions. This is,

independence means that

If this does not hold, then  and  are
dependent

Alternatively, discrete random variables  and  are
independent if for all  and ,

If  and  are not only independent but also have the
same marginal distribution, then they are independent
and identically distributed (iid).

X Y
f(x, y)

f(x, y) = fX(x)fY (y) for all x, y.

X Y

X Y
x y

X Y
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Chapter 5.5: Functions of RandomChapter 5.5: Functions of Random

VariablesVariables
Results and TheoremsResults and Theorems

24 / 4524 / 45



Functions of
RVs Functions of Random Variables

A random variable can be thought of as a function whose
input is an outcome and whose output is a real number.
When we take a function of the value the random variable
takes, the resulting value is still depends on the outcome of
a random experiment - in other words: functions of
random variables are random variables.

This means that a function of a random variable will have
probabilities attached to the value it takes, based on the
value taken by the random variable. It also means
functions of random variables will have:

probability functions (if discrete) or
probability density functions (if
continuous)
cumulative probability functions (if
discrete) or cumulative density functions
(if continuous)
expected values and variances ...
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Functions of
RVs

Linear
Combinations

Linear combinations

For engineering purposes, it often suffices to know the
mean and variance for a function of several random
variables,  (as opposed to
knowing the whole distribution of ). When  is linear,
there are explicit functions.

Proposition: If  are  independent
random variables and  are  constants,
then consider

U is itself a random variable as it is a linear
combination of n independent random
variables

U = g(X1, X2, … , Xn)
U g

X1, X2, … , Xn n
a0, a1, … , an n + 1

U = a0 + a1X1 + a2X2 + ⋯ + anXn
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Functions of
RVs

Linear
Combinations

Linear combinations[cont'd]

U, as a random variable has mean

and variance

‘EU = a0 + a1EX1 + a2EX2 + ⋯ + anEX3

‘VarU = a
2

1
VarX1 + a

2

2
VarX2 + ⋯ + a

2
nVarX3
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Functions of
RVs

Linear
Combinations

Example:

Say we have two independent random variables  and 
with , and 

. Find the mean and variance for

U = 3 + 2X - 3Y

 

 

 

 

 

 

V = -4X + 3Y

X Y

EX = 3.3, VarX = 1.91, EY = 25
VarY = 65
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Functions of
RVs

Linear
Combinations

Example:

Say  and 
. Calculate the mean and variance

of .

X ∼ Binomial(n = 10, p = 0.5)
Y ∼ Poisson(λ = 3)

Z = 5 + 2X − 7Y
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Functions of
RVs

Linear
Combinations

Sample Mean

A particularly important use of functions of random
variables concerns  iid random variables where each 

 for . Then we can define the

random variable  as follows

Note that  is a random variable

We can then find the mean and variance of this random
variable.

n

ai =
1

n
i = 1, 2, ⋯ , n

¯̄̄ ¯̄
X

¯̄̄ ¯̄
X = X1 + ⋯ Xn =

n

∑
i=1

Xi

1

n

1

n

1

n

¯̄̄ ¯̄
X
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Functions of
RVs

Linear
Combinations

Sample Mean

as they relate to the population parameters  and 
.

For independent variables  with common
mean  and variance ,

 

 

 

 

¯̄̄ ¯̄
X = X1 + ⋯ Xn =

n

∑
i=1

Xi

1

n

1

n

1

n

μ = EXi

σ2 = VarXi

X1, … , Xn

μ σ2

E(
¯̄̄ ¯̄
X) :

V(
¯̄̄ ¯̄
X) :
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Functions of
RVs

Linear
Combinations

Sample Mean

What is the point?

It does not matter if we are working with discrete or
continuous random variables, as long as we have an
independent and identically distributed (iid) sample of
size  with the same mean  and the same variance ,

the random variable  has

and

The point is that the variance of a sample mean
of size  is the population variance devided by
the sample size  which makes it smaller

i.e. as the sample size increases, the variability
of the sample mean decreases.

n μ σ2

¯̄̄ ¯̄
X

E(
¯̄̄ ¯̄
X) : μ

V(
¯̄̄ ¯̄
X) :

σ2

n

n
n
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Functions of
RVs

Linear
Combinations

Sample Mean

Example:[Seed lengths]

One botanist measured the length of  seeds from the
same plant. The seed lengths measurements are 

. Suppose it is known that the seed
lengths are iid with mean  mm and variance 
mm.

Calculate the mean and variance of the average of  seed
measurements.

10

X1, X2, … , X10

μ = 5 σ2 = 2

10
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Central Limit TheoremCentral Limit Theorem
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Functions of
RVs

Linear
Combinations

Sample Mean

CLT

Central limit theorem

One of the most frequently used statistics in engineering
applications is the sample mean. We can relate the mean
and variance of the probability distribution of the sample
mean to those of a single observation when an iid model is
appropriate.

In the case of the sample mean, if the sample size ($n$) is
large enough, we can also approximate the shape of the
probability distribution function of the sample mean!
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Functions of
RVs

Linear
Combinations

Sample Mean

CLT

Central limit theorem

If  are independent and identically
distributed (iid) random variable (with mean  and

variance ), then for large , the variable  is
approximately normally distributed. That is,

This is one of the most important results in statistics.

X1, … , Xn

μ

σ2 n
¯̄̄ ¯̄
X

¯̄̄ ¯̄
X ⋅

∼ Normal(μ, )
σ2

n
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Functions of
RVs

Linear
Combinations

Sample Mean

CLT

Example: [Tool serial numbers]

Consider selecting the last digit of randomly selected serial
numbers of pneumatic tools. Let

A plausible model for the pair of random variables 
 is that they are independent, each with the

marginal probability function

W1 = the last digit of the serial number

 observed next Monday at 9am

W2 = the last digit of the serial number

observed the following Monday at 9am

W1, W2

f(w) = { .1 w = 0, 1, 2, … , 9
0 otherwise
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Functions of
RVs

Linear
Combinations

Sample Mean

CLT

Example: [Tool serial numbers]

With  and .

Using such a distribution, it is possible to see that 

 has probability distribution

EW = 4.5 VarW = 8.25

¯̄¯̄¯̄
W = (W1 + W2)1

2
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Functions of
RVs

Linear
Combinations

Sample Mean

CLT

Example: [Tool serial numbers]

Comparing the two distributions, it is clear that even for a
completely flat/uniform distribution of  and a small
sample size of , the probability distribution of 
looks more bell-shaped than the underlying distribution.

W

n = 2 W
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Functions of
RVs

Linear
Combinations

Sample Mean

CLT

Now consider larger and larger sample sizes, 
:

Watch how CLT works here

n = 1, … , 40
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Functions of
RVs

Linear
Combinations

Sample Mean

CLT

Example: [Stamp sale time]

Imagine you are a stamp salesperson (on eBay). Consider
the time required to complete a stamp sale as , and let

Each individual sale time should have an 
 distribution. We want to consider

approximating .

S

¯̄̄¯
S =the sample mean time required to

complete the next 100 sales

Exp(α = 16.5s)

P [
¯̄̄¯
S > 17]
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Functions of
RVs

Linear
Combinations

Sample Mean

CLT

Example: [Cars]

Suppose a bunch of cars pass through certain stretch of
road. Whenever a car comes, you look at your watch and
record the time. Let  be the time (in minutes) between
when the  car comes and the  car comes for 

. Suppose you know the average time
between cars is  minute.

Find the probability that the average time gap between
cars for the next 44 cars exceeds 1.05 minutes.

Xi

i
th (i + 1)th

i = 1, … , 44
1
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Functions of
RVs

Linear
Combinations

Sample Mean

CLT

Example: [Baby food jars, cont'd]

The process of filling food containers appears to have an
inherent standard deviation of measured fill weights on
the order of . Suppose we want to calibrate the filling
machine by setting an adjustment knob and filling a run of

 jars. Their sample mean net contents will serve as an
indication of the process mean fill level corresponding to
that knob setting.

You want to choose a sample size, , large enough that
there is an \% chance the sample mean is within g of
the actual process mean.

1.6g

n

n

80 .3
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Functions of
RVs

Linear
Combinations

Sample Mean

CLT

Example: [Printing mistakes]

Suppose the number of printing mistakes on a page
follows some unknown distribution with a mean of  and
a variance of . Assume that number of printing mistakes
on a printed page are iid.

What is the approximate probability distribution of
the average number of printing mistakes on 50 pages?

 

 

 

Can you find the probability that the number of
printing mistakes on a single page is less than 3.8?

 

 

 

4

9
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Functions of
RVs

Linear
Combinations

Sample Mean

CLT

Example: [Printing mistakes]

Can you find the probability that the average number
of printing mistakes on 10 pages is less than 3.8?

 

 

 

Can you find the probability that the average number
of printing mistakes on 50 pages is less than 3.8?

45 / 45


