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Large Sample
Inference Large Sample Con�dence Interval

Formal statistical inference uses probability theory to
quantify the reliability of data-based conclusions. We want
information on a population.e.g

true mean fill weight of food jams
true mean strength of metal bars
true mean of the number of accidents on a
highway in Iowa

We can then use:

1. Point estimates:

e.g sample mean  of the strength of metal bars is 
.

We would then say that  is an estimate
for true (population ) mean .

¯̄̄ ¯̄
X

4.83

¯̄̄ ¯̄
X

μ
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Large Sample
Inference Large Sample Con�dence Interval

1. Interval estimates:
 is likely to be inside an interval. (e.g 

Then we can say we are confident that the true mean of
the strength of metal bars  is somewhere in the 

 

But the question is how confident?

μ

μ ∈ (2.84, 5.35))

(μ)
(2.84, 5.35)
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Large Sample
Inference Large Sample Con�dence Interval

Many important engineering applications of statistics fit
the following mold. Values for parameters of a data-
generating process are unknown. Based on data, the goal
is

1.identify an inteval of values likely to contain
an unknown parameter

2.qualify "how likely" the interval is to cover
the correct value of the unknown parameter.
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Con�dence IntervalCon�dence Interval
De�nition and the useDe�nition and the use
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Large Sample
Inference

Con�dence
Interval

Con�dence Interval

Definition: confidence interval for a parameter (or
function of one or more parameters) is a data-based
interval of numbers thought likely to contain the
parameter (or function of one or more parameters)
possessing a stated probability-based confidence or
reliability.

A confidence interval is a realization of a
random interval, an interval on the real line
with a random variable at one or both of the
endpoints.
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Inference

Con�dence
Interval

Example:[Instrumental drift]

Let  be a measure of instrumental drift of a random
voltmeter that comes out of a certain factory. Say 

. Define a random interval:

What is the probability that  is inside the interval?

Z

Z ∼ N(0, 1)

(Z − 2,Z + 2)

−1

P(−1 is in (Z − 2,Z + 2)) = P(Z − 2 < −1 < Z + 2)

= P(Z − 1 < −1 < Z + 3)

= P(−1 < −Z < 3)

= P(−3 < Z < 1)

= Φ(1) − Φ(−3)

= 0.84.
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Con�dence
Interval

Example:[More practice]

Calculate:

, 

 

P(2 in (X − 1,X + 1)) X ∼ N(2, 4)

P(2 ∈ (X − 1,X + 1)) = P(X − 1 < 2 < X + 1)

= P(−1 < 2 − X < 1)

= P(−1/2 < X < 1/2)

= Φ(1/2) − Φ(−1/2)

= 0.6915 − 0.3085

= 0.383
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Example:[Abstract random intervals]

Let's say  are iid with , mean ,
variance . We can find a random interval that provides
a lower bound for  with  probability:

We want A such that . 
We know by CLT:

Therefore,

X1, X2, … , Xn n ≥ 25 μ
σ2

μ 1 − α

P(μ ∈ (A, +∞)) = 1 − α

¯̄̄ ¯̄
X ≈ N(μ, σ2/n)

∼ N(0, 1).
¯̄̄ ¯̄
X − μ

σ/√n
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Example:[Abstract random intervals]

Then

Now if we set

then we have

P( ≤ Z1−α) ≈ 1 − α

⇒P(
¯̄̄ ¯̄
X − Z1−α ≤ μ) ≈ 1 − α

⇒P(μ ∈ (
¯̄̄ ¯̄
X − Z1−α , +∞)) ≈ 1 − α

¯̄̄ ¯̄
X − μ

σ/√n
σ

√n
σ

√n

A =
¯̄̄ ¯̄
X − Z1−α

σ

√n

P(μ ∈ (A, +∞)) ≈ 1 − α
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Interval

Example:[Abstract random intervals]
Calculate:

( The last result is by CLT assuming that  )

P(μ ∈ (
¯̄̄ ¯̄
X − z1−α/2 ,

¯̄̄ ¯̄
X + z1−α/2 )), X ∼ N(μ, σ2)σ

√n

σ

√n

P(μ ∈ (
¯̄̄ ¯̄
X − z1−α/2 ,

¯̄̄ ¯̄
X + z1−α/2 ))

=P(
¯̄̄ ¯̄
X − z1−α/2 < μ <

¯̄̄ ¯̄
X + z1−α/2 )

=P(−z1−α/2 < μ −
¯̄̄ ¯̄
X < z1−α/2 )

=P(−z1−α/2 <
¯̄̄ ¯̄
X − μ < z1−α/2 )

=P(−z1−α/2 < < z1−α/2)

=P(−z1−α/2 < Z < z1−α/2)

≈1 − α

σ

√n

σ

√n
σ

√n

σ

√n
σ

√n

σ

√n
σ

√n

σ

√n
¯̄̄ ¯̄
X − μ

σ/√n

n ≥ 25
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Example:[Abstract random intervals]

So,  falls within the interval 

 with the probability of 

 for 

μ

(
¯̄̄ ¯̄
X − z1−α/2 ,

¯̄̄ ¯̄
X + z1−α/2 )σ

√n

σ

√n

1 − α X ∼ N(μ, σ2)
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A large-n con�dence intervalA large-n con�dence interval

for for  involving  involving μμ σσ
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Large Sample
Inference

Con�dence
Interval

CI for 

A Large-n con�dence interval for  involving 

A (1-  confidence interval for an unknown
parameter is the realization of a random interval that
contains that parameter with probability .

 is called the confidence level

For random variables  iid with 
, , a  confidence

interval for  is

which is a realization from the random interval

μ

μ σ

α)%

1 − α

α

X1, X2, … , Xn

E(X1) = μ V ar(X1) = σ2 (1 − α)%
μ

(¯̄x̄ − z1−α/2 , ¯̄x̄ + z1−α/2 )
σ

√n

σ

√n

(
¯̄̄ ¯̄
X − z1−α/2 ,

¯̄̄ ¯̄
X + z1−α/2 ).

σ

√n

σ

√n
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In General

Two-sided  confidence interval for 

One-sided  confidence interval for 
with a upper confidence bound

One-sided  confidence interval for 
with a lower confidence bound

μ

100(1 − α)% μ

(¯̄x̄ − z1−α/2 , ¯̄x̄ + z1−α/2 )
σ

√n

σ

√n

100(1 − α)% μ

(−∞ ,  ̄ ¯̄x + z1−α )
σ

√n

100(1 − α)% μ

(¯̄x̄ − z1−α  ,   + ∞)
σ

√n
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Con�dence
Interval

CI for 

Example:[Fill weight of jars]

Suppose a manufacturer fills jars of food using a stable
filling process with a known standard deviation of 

g. We take a sample of  jars and measure
the sample mean weight g. A two-sided 
confidence interval, , for the true mean weight 
is:

or we can write it as g

μ

σ = 1.6 n = 47
¯̄x̄ = 138.2 90%

α = 0.1 μ

(¯̄x̄ − z1−α/2 , ¯̄x̄ + z1−α/2 )

= (¯̄x̄ − z1−0.1/2 , ¯̄x̄ + z1−0.1/2 )

= (138.2 − z.95  ,  138.2 + z.95 )

= (038.2 − 1.64(.23) ,  138.2 + 1.64(.23))

= (137.82 ,  138.58)

σ

√n

σ

√n

σ

√n

σ

√n

1.6

√47

1.6

√47

138.2 ± 0.38
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CI for 

Example:[Fill weight of jars]

Interpretation:

We are  confident that the true mean is
between g and g

or we can say

If we took 100 more samples of 47 jams each,
roughly 90 of those samples would have a
confidence interval containing the true mean fill
weight

μ

90%
137.82 138.58
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Interval

CI for 

Example:[Fill weight of jars]

What if we just want to be sure that the true mean fill
weight is high enough?

We could use a one-sided  CI with a lower bound:

Then we would say:

We are  confident that the true mean fill
weight is above 137.91

μ

90%

(¯̄x̄ − z1−α  ,   + ∞)

= (138.2 − z.9  ,   + ∞)

= (137.91 ,   + ∞)

σ

√n

1.6

√47

90%
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Con�dence
Interval

CI for 

Example:[Hard disk failures]

F. Willett, in the article "The Case of the Derailed Disk
Drives?" (Mechanical Engineering, 1988), discusses a
study done to isolate the cause of link code A failure in a
model of Winchester hard disk drive.

For each disk, the investigator measured the breakaway
torque (in. oz.) required to loosen the drive's interrupter
flag on the stepper motor shaft.

Breakaway torques for  disk drives were recorded, with
a sample mean of  in. oz. Suppose you know the true
standard deviation of the breakaway torques is  in. oz.

μ

26

11.5

5.1
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Con�dence
Interval

CI for 

Example:[Hard disk failures]

Calculate and interpret:

A two-sided  confidence interval for the true
mean breakaway torque of the relevant type of
Winchester drive.

Interpretation: we are  confident that the true
mean breaking torque lies between  and 
in.oz.

μ

90%

(¯̄x̄ − z1−α/2 , ¯̄x̄ + z1−α/2 )

= (¯̄x̄ − z1−0.1/2 , ¯̄x̄ + z1−0.1/2 )

= (11.5 − z.95  ,  11.5 + z.95 )

= (11.5 − 1.64(1.0002) ,  11.5 + 1.64(1.0002))

= (9.86 ,  13.14)

σ

√n

σ

√n

σ

√n

σ

√n

5.1

√26

5.1

√26

90%
9.86 13.14
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CI for 

Example:[Width of a CI]

If you want to estimate the breakaway torque with a 2-
sided,  confidence interval with  in. oz. of
precision, what sample size would you need?

Interval precision = interval half width

Therefore, for a two-sided  CI we have

which means that the precision is 

We want 

μ

95% ±2.0

95%

(¯̄x̄ − z1−α/2 , ¯̄x̄ + z1−α/2 )
σ

√n

σ

√n

z1−α/2
σ

√n

z1−α/2 ≤ 2σ

√n
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CI for 

Example:[Width of a CI]

So,

We would need a sample of at least 25 disks to have at
least a precision of 2 in.oz

μ

z1−.05/2 ≤ 2

z.975 ≤ 2

1.96 ≤ 2

≤ 2

5.1

√n

5.1

√n

5.1

√n

9.996

√n

⇒ n ≥ 24.98

⇒ n ≥ 25
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A large-n con�dence intervalA large-n con�dence interval

for for  when  when  is Unknown is Unknownμμ σσ
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Large Sample
Inference

Con�dence
Interval

CI for 

CI for 
unknown 

A generally applicable large-n confidence interval for 

Although the equations for a  confidence
interval is mathematically correct, it is severely limited in
its usefulness because it requres us to know  (the
population variance). It is unusual to have to estimate 
and know  in real life.

If  and  is unknown, , where

is still approximately standard normally distributed.

So, you can replace  in the confidence interval formula
with the sample standard deviation, .

μ

μ

σ2

μ

(1 − α)%

σ
μ

σ

n ≥ 25 σ Z =
¯̄̄ ¯̄
X−μ

s/√n

s =

 
⎷

n

∑
i=1

(xi − ¯̄x̄)2.
1

n − 1

σ
s
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Con�dence
Interval

CI for 

CI for 
unknown 

A generally applicable large-n confidence interval for 

Two-sided  confidence interval for 

One-sided  confidence interval for 
with a upper confidence bound

One-sided  confidence interval for 
with a lower confidence bound

μ

μ

σ2

μ

100(1 − α)% μ

(¯̄x̄ − z1−α/2 , ¯̄x̄ + z1−α/2 )
s

√n

s

√n

100(1 − α)% μ

(−∞ ,  ̄ ¯̄x + z1−α )
s

√n

100(1 − α)% μ

(¯̄x̄ − z1−α  ,   + ∞)
s

√n
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Con�dence
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CI for 

CI for 
unknown 

Example:

Suppose you are a manufacturer of construction
equipment. You make  inch wire rope and need to
determine how much weight it can hold before breaking
so that you can label it clearly. Here are breaking
strengths, in kg, for  sample wires:

 [1] 100.37  96.31  72.57  88.02 105.89
 [6] 107.80  75.84  92.73  67.47  94.87
[11] 122.04 115.12  95.24 119.75 114.83
[16] 101.79  80.90  96.10 118.51 109.66
[21]  88.07  56.29  86.50  57.62  74.70
[26]  92.53  86.25  82.56  97.96  94.92
[31]  62.00  93.00  98.44 119.37 103.70
[36]  72.40  71.29 107.24  64.82  93.51
[41]  86.97

The sample mean breaking strength is  kg
and the sample standard deviation is  kg.

μ

μ

σ2

0.0125

41

91.85

17.6
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Con�dence
Interval

CI for 

CI for 
unknown 

Example: Using the appropriate % confidence interval,
try to determine whether the breaking strengths meet the
requirement of at least  kg.

The CI is then

With  confidence, we have shown that the
true mean breaking strength is above 
kg.
Hence, we meet the kg requirement with 

 confidence

μ

μ

σ2

95

85

(1 − α = .95 , ¯̄x̄ = 91.85 , s = 17.6 , n = 41)

(¯̄x̄ − z1−α/2  ,   + ∞)

= (91.85 − z.95  ,   + ∞)

= (91.85 − 1.64  ,   + ∞)

= (87.3422 ,   + ∞)

s

√n

17.6

√41
17.6

√41

95%
87.3422

85
95%
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Small-sample Con�dence IntervalSmall-sample Con�dence Interval

for a Meanfor a Mean
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Con�dence
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CI for 

CI for 
unknown 

Small-sample con�dence intervals for a mean

The most important practical limitation on the use of
the methods of the previous sections is the
requirement that  must be large 

That restriction comes from the fact that without it,

there is no way (in general) to calculate  that is

approximately . (i.e we cannot use CLT when
sample size is small)

So, if one mechanically uses the large-  interval
formula  with a small sample, there is no

way of assessing what actual level of confidence
should be declared.

μ

μ
σ2

n (≥ 25)

¯̄̄ ¯̄
X − μ

S/n
N(0, 1)

n
¯̄x̄ ± z s

√n
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Con�dence
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CI for 

CI for 
unknown 

Small-sample con�dence intervals for a mean

If it is sensible to model the observations as iid
normal random variables, then we can arrive at
inference methods for small-$n$ sample means.

In this case (small sample size),  is not standard

Normal anymore, BUT it is a different normed
distribution!

μ

μ

σ2

¯̄x̄ ± z
s

√n
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The Student t DistributionThe Student t Distribution
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CI for 
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t Distribution

t Student distribution

Definition: The (Student)  distribution with degrees of
freedom parameter  is a continuous probability
distribution with probability density

The  distribution

is bell-shaped and symmetric about 
has fatter tails than the normal, but
approaches the shape of the normal as 

.

μ

μ
σ2

t
ν

f(t) = (1 + )
−(ν+1)/2

for all t ∈ R.
Γ( )ν+1

2

Γ ( ) √πνν
2

t2

ν

t

0

ν → ∞
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CI for 
unknown 

t Distribution

t Student distribution

We use the  table (Table B.4 in Vardeman and Jobe) to
calculate quantiles.

μ

μ

σ2

t
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CI for 
unknown 

t Distribution

t Student distribution

Example: Say . Find  such that .

So,  holds true if  (by the table).

μ

μ

σ2

T ∼ t5 c P(T ≤ c) = 0.9

P(T ≤ c) = 0.9 c = 1.476
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Small-sample Con�dence IntervalSmall-sample Con�dence Interval

for for  when  when  is unknown is unknownμμ σσ
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Large Sample
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Con�dence
Interval

CI for 

CI for 
unknown 

t Distribution

Small 
unknown 

Small-sample con�dence intervals,  unknown

If we can assume that  are iid with mean 
and variance , and are also normally distributed, if 

, we cannot use CLT.

It is not easy to prove but,

We can then use  instead of  in the

confidence intervals.

Note that the df (degree of freedom) for the t distribution
is .

μ

μ
σ2

n
σ2

σ

X1, … , Xn μ

σ2

n < 25

∼ tn−1

¯̄̄ ¯̄
X − μ

S/√n

tn−1,1−α/2 z1−α/2

n − 1
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t Distribution

Small 
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Small-sample con�dence intervals,  unknown

Two-sided  confidence interval for 

One-sided  confidence interval for 
with a upper confidence bound

One-sided  confidence interval for 
with a lower confidence bound

μ

μ

σ2

n

σ2

σ

100(1 − α)% μ

(¯̄x̄ − tn−1,1−α/2 , ¯̄x̄ + tn−1, 1−α/2 )
s

√n

s

√n

100(1 − α)% μ

(−∞ ,  ̄ ¯̄x + tn−1, 1−α )
s

√n

100(1 − α)% μ

(¯̄x̄ − tn−1, 1−α  ,   + ∞)
s

√n
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CI for 
unknown 

t Distribution

Small 
unknown 

Example: [Concrete beams]

10 concrete beams were each measured for flexural
strength (MPa). Assuming the flexural strengths are iid
normal, calculate and interpret a two-sided \% CI for the
flexural strength of the beams.

[1] 8.2 8.7 7.8 9.7 7.4 7.8 7.7 11.6 11.3 11.8

μ

μ

σ2

n

σ2

99
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CI for 
unknown 

t Distribution

Small 
unknown 

Example: [Concrete beams]

Is the true mean flexural strength below the minimum
requirement of 11 MPa? Find out with the appropriate
95\% CI.

μ

μ

σ2

n

σ2
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CI for 
unknown 

t Distribution

Small 
unknown 

Example: [Paint thickness]

Consider the following sample of observations on coating
thickness for low-viscosity paint.

 [1] 0.83 0.88 0.88 1.04 1.09 1.12 1.29
 [8] 1.31 1.48 1.49 1.59 1.62 1.65 1.71
[15] 1.76 1.83

A normal QQ plot shows that they are close enough to
normally distributed.

μ

μ

σ2

n

σ2
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CI for 
unknown 

t Distribution

Small 
unknown 

Example: [Paint thickness]

Calculate and interpret a two-sided % confidence
interval for the true mean thickness.

μ

μ

σ2

n

σ2

90
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CI for 
unknown 

t Distribution

Small 
unknown 

Wrap Up

Common Assumptions and Common Statements

Suppose that  are random variables
whose values will be determined based on the results of
random events.

Large Sample Size, Known Variance
Assuming:

,
,

 is known

Then by CLT,

`

 Confidence interval for :

μ

μ

σ2

n
σ2

X1, X2, … , Xn

E(Xi) = μ
n ≥ 30
V ar(Xi) = σ2

∼ N(0, 1)
X̄ − μ

√σ2/n

100(1 − α)% μ
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Wrap Up

Common Assumptions and Common Statements

Large Sample Size, Unknown Variance
Assuming:

,
,

 is unknown, but sample variance 

 can be calculated

Then by CLT and convergence of sample
variance

`

%-Confidence interval for :

μ

μ
σ2

n
σ2

E(Xi) = μ
n ≥ 30
V ar(Xi)

S2 = ∑ (Xi − X̄)21
n−1

∼ N(0, 1)
X̄ − μ

√S2/n

100 ⋅ (1 − α) μ

x̄ ± z1−α/2√
s2

n
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Wrap Up

Common Assumptions and Common Statements

Small Sample Size, Unknown Variance
Assuming:

,
,

 is unknown, but sample variance 

 can be

calculated

Then by CLT and convergence of sample
variance

`

%-Confidence interval for :

μ

μ
σ2

n
σ2

E(Xi) = μ
n < 30
V ar(Xi)

S2 = ∑n

i=1 (Xi − X̄)21
n−1

∼ tn−1
X̄ − μ

√S2/n

100 ⋅ (1 − α) μ
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unknown 

Wrap Up

Common Assumptions and Common Statements

With the last set of assumptions, we can conclude that 

 follows a "t-distribution with  degrees of

freedom"

The t-distribution looks a lot like a standard normal
distribution and we use it the same way:

It is symmetric
It is centered at 0
Important quantiles are collected together in tables
for reference

It only has one parameter, the degrees of freedom. In this
class, the degrees of freedom are related to the number of
parameters being tested

degrees of freedom = (# of observations) - (# of
parameters)

μ

μ
σ2

n
σ2

X̄ − μ

√S2/n
n − 1
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