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My Game

The Rules
Let's Play A Game
The semester is getting a little intense! You are a livinLet's
break the tension with a friendly game.

Here are the rules:

I have a new deck of cards. 52 Cards, 26 with Suits that
are Red, 26 with Suits that are Black
You draw a red-suited card, you give me a dollar
You draw a black-suited card, I give you two dollars

Quick Questions

What is the expected number of dollars you will win
playing this game?

Would you play this game?
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Are We Forgetting Something?Are We Forgetting Something?
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My Game

The Rules

The
Assumptions

Be Careful About Your Assumptions

Pause for a minute and think about what you are
assuming is true when you play this game. For instance,

You assume I'm going to shuffle the cards fairly
You assume there are 52 cards in the deck
You assume the deck has 26 red-suited cards in it
You assume the deck has a red-suited card in it

How can we make sure the assumptions are safe??

Shuffling assumption: watch me shuffle, make sure
I'm not doing magic tricks, etc
52 Cards assumption: count the cards
Red-suit assumption: Count the number of red cards

Whew! We can actually make sure all of our assumptions
are good!
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One ProblemOne Problem
I Refuse to Show You The CardsI Refuse to Show You The Cards
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Do You Trust Me?Do You Trust Me?
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My Game

The Rules

The
Assumptions

Our Assumptions

I'm not going to show you all the cards. In other words, I
refuse to show you the population of possible outcomes.
This is justified: we are in a statistics course after all.

So, let's start with our unverifiable assumption: Is it safe to
assume that this is a fair game. Why would we make this
assumption?

You trust that I'm (basically) an honest person
(assumption of decency)
You trust that I'm getting paid enough that I wouldn't
risk cheating students out of money (assumption of
practicality)
You saw the deck was new (manufacturer trust
assumption)
You want it to be an fair game because you would win
lots of money if it was (assumption in self-interest)
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My Game

The Rules

The
Assumptions

Our Assumptions

In statistical terminology, we wrap all these assumptions
up into one assumption: our "null hypothesis" is that the
game is not rigged - that the probability of you winning is
0.5

Null Hypothesis 
The assumptions we are operate under in
normal circumstances (i.e., what we believe is
true). We wrap these assumptions up into a
statistical/mathematical statement, but we will
accept them unless we have reason to doubt
them. We use the notation H0 to refer to the
null hypothesis.

In this case, we could say that the probability of winning is
p and that would make our null hypothesis

H0 : p = 0.5
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My Game

The Rules

The
Assumptions

Our Assumptions

Of course our assumptions could be wrong. We call the
other assumptions our "alternative hypothesis":

Alternative Hypothesis 
The conditions that we do require proof to
accept. We would have to change our beliefs
based on evidence. We use the notation HA (or
sometimes, H1) to refer to the alternative

hypothesis.

In this case, we could say that our alternative to believing
the game is "fair" is to believe the game is not fair, or that
the probability of winning is not 0.5. We write:

HA : p ≠ 0.5
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A CompromiseA Compromise
I Won't Show You All The CardsI Won't Show You All The Cards

But I Will Let You Test The GameBut I Will Let You Test The Game
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My Game

The Rules

The
Assumptions

The Test

Testing the Game

The test of whether or not the game is worth playing can
be defined in term of whether or not our assumptions are
true. In other words, we are going to test whether our null
hypothesis is correct:

Hypothesis Tests 
A hypothesis test is a way of checking if the
outcomes of a random experiment are
statistically unusual based on our assumptions.
If we see really unusual results, then we have
statistically significant evidence that allows
us to reject our null hypothesis. If our
assumptions lead to results that are not
unusual, then we fail to reject our null
hypothesis.
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My Game

The Rules

The
Assumptions

The Test

Testing the Game

So how can we test the game? What if we tried a single
round of the game?

What are the probabilities of the outcome of a single
game?
If we draw a single card do we have enough evidence
that the game is fair?
Do we have enough evidence that the game is rigged?

Based on a single round of the game, both of the possibel
outcomes are pretty normal - that's not good enough.

If we draw a losing card, then we might be inclined to call
the game unfair - even though a losing card is pretty
common for a single round of the game

If we draw a winning card, then we might be inclined to
call the game fair - even though a winning card may be
common even when the game is not fair!

We can make lots of mistakes!!
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My Game

The Rules

The
Assumptions

The Test

The Errors

The Mistakes We Might Make

We could of course be wrong: For instance, we could, just
by random chance, see outcomes that are unusual for the
assumptions we make and reject the assumptions even if
(in reality they are true). This is called a "Type I Error"

Type I Error 
When the results of a hypothesis test lead us to
reject the assumptions, while the assumptions
are actually true, we have committed a Type I
Error.
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My Game

The Rules

The
Assumptions

The Test

The Errors

The Mistakes We Might Make

A common example of this is found in criminal court:

We assume that a individual accused of a crime is
innocent (our assumption)
After examinig the evidence, we conclude that it is
there is no reasonable doubt the person is not
innocent (in other words, we reject the assumption
because it is very unlikely to be true based on our
evidence).
If the person truly is innocent, then we have
committed a Type I error (rejecting assumptions that
were true).
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My Game

The Rules

The
Assumptions

The Test

The Errors

The Mistakes We Might Make

We could also make a different error: we could choose not
to reject the assumptions when in reality the assumptions
are wrong.

Type II Error 
When the results of a hypothesis test lead us to
fail to reject the assumptions, while the
assumptions are actually false, we have
committed a Type II Error.
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My Game

The Rules

The
Assumptions

The Test

The Errors

The Mistakes We Might Make

Again, if we consider the example of criminal court:

We assume that a individual accused of a crime is
innocent (our assumption)
After examinig the evidence, we conclude that it is
there is not evidence beyond a reasonable doubt the
person is not innocent (in other words, the evidence is
not enough to reject our assumption because it is still
reasonable to doubt the accused's guilt).
If the person truly is not innocent, then we have
committed a Type II error (failing to reject
assumptions that were false).

In general, we want to make sure that a Type I error is
unlikely. To take the example of court again,

We commit a Type II error: a guilty person goes free
We commit a Type I error: an innocent person goes to
jail; the guiilty person is still free
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My Game

The Rules

The
Assumptions

The Test

The Errors

The Mistakes We Might Make

Let's go back to my game: We assume I am an honest
person (i.e., we assume that the probability of winning a
single game is p = 0.5)
Type I Error: Rejecting True Assumptions

We gather evidence
Looking at our evidence, we decide that the game was
not fair even though it was.
Fallout: you slander me, you disparge me, we have a
fight, BOOOM.

Type II Error: Failing to Reject False Assumptions

We gather evidence
Looking at our evidence, we decide that the game was
fair even though it was not.
Fallout: you play the game and lose some money.

Ideally, we won't make either error. However, we can only
base our decision of our evidence we can gather - the truth
is out of our grasp!
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My Game

The Rules

The
Assumptions

The Test

The Errors

The Evidence

Gathering Statistical Evidence

Okay, so we don't want to make either error - that means
we need good evidence.

Like we talked about before, even if the game is fair one
test round of the game would not be enough to make a
good decision since drawing a red-suited card and
drawing a black-suited card are both pretty normal for a
single round of the game.

But what if we played the game 10 times in a row? After 10
rounds, do you think we would have enough evidence to
make a decision about our assumption?
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My Game

The Rules

The
Assumptions

The Test

The Errors

The Evidence

p-value

p-value

If we assume the null hypothesis, then we can make some
assumptions about what results are likely and what
results are unlikely. We describe the likelihood of the
results that we actually get using a p-value

p-value 
After gathering evidence (aka, data) we can
determine the probability that we would have
gotten the evidence we did if our assumptions
were true. That probabiliity is called the p-
value. If the p-value is really, really small that
means that the assumptions we started with
are pretty unlikely and we reject our
assumptions. If the p-values is not small, then
the evidence collected (aka, the data) is pretty
normal for our assumptions and we fail to
reject our assumptions.
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My Game

The Rules

The
Assumptions

The Test

The Errors

The Evidence

p-value

p-value

In other words, we collect evidence and determine a way
to measure the whether or not our data was unusual if our
assumptions are true.

If we have a very, very low chance of

seeing both our results and
having true assumptions then we reject the
assumptions

Going along with the terminology we have introduced, if
we have a small p-value then we reject our null
hypothesis.
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My Game

The Rules

The
Assumptions

The Test

The Errors

The Evidence

p-value

Gathering Statistical Evidence

In this game, if we assume that the game is fair, we have

two outcomes: success (winning) and failure (losing)
a constant chance of a successful outcome (p = 0.5),
assuming the game is fair)
independent rounds of the game (assuming fair
shuffle, which we can check)

In other words, if we test the game 10 times we can model
the number of successful outcomes as binomial: For X =
the total number of wins,

P(X = x) =
10!
x !

(10 − x) !(0.5)x(1 − 0.5)10 − x

This gives us a way of getting our p-value
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Let's Test the GameLet's Test the Game
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My Game

The Rules

The
Assumptions

The Test

The Errors

The Evidence

p-value

The
Conclusion

Gathering Statistical Evidence

We played the game. Let's figure out whether our results
were unusual or not.

Again, we assume the game is fair and have decided that
the number of times we win will follow a binomial
distribution with probabiliity function

P(X = x) =
10!
x !

(10 − x) !(0.5)x(1 − 0.5)10 − x

Now we need to make a conclusion: do we accept or reject
our assumptions? What do we consider unusual? Is it fair
to decide after we play?
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My Game

The Rules

The
Assumptions

The Test

The Errors

The Evidence

p-value

The
Conclusion

Summary

Sometimes we can know if something is true or not by
examining the truth directly, but not always
When we can't examine the truth, we need to test
what we believe to be true
A statistical test is a tool for testing our assumptions
about what we believe

We state our assumed belief (generally our
current beliefs, or the ethical beliefs, or the beliefs
we hope are true, ...)
We come up with a way of collecting data that
could validate or invalidate our assumption
We measure how likely it was that we would have
gathered the data we did if our assumptions were
correct
We reject the assumptions if our data is very
unlikely we are our current beliefs
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Now let's make everythingNow let's make everything

a little more formala little more formal
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Section 6.3Section 6.3

Hypothesis TestingHypothesis Testing
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Hypothesis
Testing Hypothesis testing

Last section illustrated how probability can enable
confidence interval estimation. We can also use
probability as a means to use data to quantitatively assess
the plausibility of a trial value of a parameter.

Statistical inference is using data from the sample to
draw conclusions about the population.

1. Interval estimation (confidence
intervals): 
Estimates population parameters and
specifying the degree of precision of the
estimate.

1. Hypothesis testing: 
Testing the validity of statements about the
population that are formed in terms of
parameters.
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Hypothesis
Testing

Null

De�nition:

Statistical significance testing is the use of data in the
quantitative assessment of the plausibility of some trial
value for a parameter (or function of one or more
parameters).
Significance (or hypothesis) testing begins with the
specification of a trial value (or hypothesis).

A null hypothesis is a statement of the form

Parameter = #

or

Function of parameters = #

for some # that forms the basis of investigation in a
significance test. A null hypothesis is usually formed to
embody a status quo/"pre-data" view of the parameter. It is
denoted H0.
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Hypothesis
Testing

Null

Alternative

De�nition:

An alternative hypothesis is a statement that stands in
opposition to the null hypothesis. It specifies what forms
of departure from the null hypothesis are of concern. An
alternative hypothesis is denoted as Ha. It is of the form

Parameter ≠ #

or

Parameter > #  or Parameter < #

Examples (testing the true mean value):

H0 : μ = # H0 : μ = #  H0 : μ = #

Ha : μ ≠ # Ha : μ > # Ha : μ < #

Often, the alternative hypothesis is based on an
investigator's suspicions and/or hopes about th true state
of affairs.
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Hypothesis
Testing

Null

Alternative

The goal is to use the data to debunk the null hypothesis in
favor of the alternative.

1. Assume H0.

2. Try to show that, under H0, the data are preposterous.

(using probability)

3. If the data are preposterous, reject H0 and conclude Ha
.

The outcomes of a hypothesis test consists of:
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Hypothesis
Testing

Null

Alternative

Probability of type I error

It is not possible to reduce both type I and type II erros at
the same time. The approach is then to fix one of them.

We then fix the probability of type I error and try to
minimize the probability of type II error.

We define the probability of type I error to be α
(the significance level)
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Hypothesis
Testing

Null

Alternative

Example: [Fair coin]

Suppose we toss a coin n = 25 times, and the results are
denoted by X1, X2, …, X25. We use 1 to denote the result of a
head and 0 to denote the results of a tail. Then 
X1 ∼ Binomial(1, ρ) where ρ denotes the chance of getting

heads, so E(X1) = ρ, Var(X1) = ρ(1 − ρ). Given the result is you
got all heads, do you think the coin is fair?

Null hypothesis :H0 : the coin is fair or H0 : ρ = 0.5

Alternative hypothesis :Ha : ρ ≠ 0.5

If H0 was correct, then 

P(results are all heads) = (1 /2)25 < 0.000001

I don't think this coin is fair (reject H0 in favor
of Ha)
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Hypothesis
Testing

Null

Alternative

In the real life, we may have data from many different
kinds of distributions! Thus we need a universal
framework to deal with these kinds of problems.

We have n = 25 ≥ 25 iid trials ⇒  By CLT we know if 
H0 : ρ = 0.5( = E(X)) then

¯
X − ρ

√ρ(1 − ρ) /n
∼ N(0, 1)

We obsrved 
¯
X = 1, so

¯
X − 0.5

√0.5(1 − 0.5) /25
=

1 − 0.5

√0.5(1 − 0.5) /25
= 5

Then the probability of seeing as wierd or wierder data is

P(Observing something wierd or wierder) =
P(Z bigger than 5 or less than -5)

< 0.000001
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Hypothesis
Testing

Null

Alternative

P-value

Signi�cance tests for a mean

Definition:
A test statistic is the particular form of numerical data
summarization used in a significance test.

Definition:
A reference (or null) distribution for a test statistic is the
probability distribution describing the test statistic,
provided the null hypothesis is in fact true.

Definition:
The observed level of significance or p-value in a
significance test is the probability that the reference
distribution assigns to the set of possible values of the test
statistic that are at least as extreme as the one actually
observed.

36 / 90



Hypothesis
Testing

Null

Alternative

P-value

Signi�cance tests for a mean

In the previous example, the test statistic was 
¯
X − ρ

√ρ(1 − ρ) /n
∼ N(0, 1)

In the previous example, the null distribution was N(0, 1)

In the previous example, the p-value was < 0.000001
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Hypothesis
Testing

Null

Alternative

P-value

Signi�cance tests for a mean

In other words:

Let K be the test statistics value based on the data

Say

H0 : μ = μ0

Ha : μ ≠ μ0

P(observing data as or more extreme as K) = P(Z < − K or Z > k)

is defined as the p-value
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Hypothesis
Testing

Null

Alternative

P-value

Signi�cance tests for a mean

Based on our results from Section 6.2 of the notes, we can
develop hypothesis tests for the true mean value of a
distribution in various situations, given an iid sample 
X1, …, Xn where H0 : μ = μ0.

Let K be the value of the test statistic, Z ∼ N(0, 1), and 
T ∼ tn− 1. Here is a table of p-values that you should use for

each set of conditions and choice of Ha.
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Hypothesis
Testing

Null

Alternative

P-value

Steps to perform a hypothesis test

1. State H0 and H1

2. State α, significance level, usually a small
number (0.1, 0.05 or 0.01)

3. State form of the test statistic, its
distribution under the null hypothesis, and
all assumptions

4. Calculate the test statistic and p-value

5. Make a decision based on the p-value(if p-
value < α, reject H0 otherwise we fail to

reject H0)

6. Interpret the conclusion using the consept
of the problem
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Hypothesis
Testing

Null

Alternative

P-value

Example:[Cylinders]

The strengths of 40 steel cylinders were measured in MPa.
The sample mean strength is 1.2 MPa with a sample
standard deviation of 0.5 MPa. At significance level α = 0.01
, conduct a hypothesis test to determine if the cylinders
meet the strength requirement of 0.8 MPa.
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Hypothesis
Testing

Null

Alternative

P-value

Example: [Concrete beams]

10 concrete beams were each measured for flexural
strength (MPa). The data is as follows.

[1] 8.2 8.7 7.8 9.7 7.4 7.8 7.7 11.6 11.3 11.8

The sample mean was 9.2 MPa and the sample variance
was 3.0933 MPa. Conduct a hypothesis test to find out if the
flexural strength is different from 9.0 MPa.
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Hypothesis Testing Using Con�denceHypothesis Testing Using Con�dence
IntervalInterval
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Hypothesis
Testing

Null

Alternative

P-value

Hypothesis testing using the CI

We can also use the 1 − α confidence interval to perform
hypothesis tests (instead of p-values). The confidence
interval will contain μ0 when there is little to no evidence
against H0 and will not contain μ0 when there is strong

evidence against H0.
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Hypothesis
Testing

Null

Alternative

P-value

CI method

Hypothesis testing using the CI

Steps to perform a hypothesis test using a confidence
interval:

1. State H0 and H1

2. State α, significance level

3. State the form of 100 (1 − α) % CI along with
all assumptions necessary. (use one-sided
CI for one-sided tests and two-sided CI for
two sided tests)

4. Calculate the CI

5. Based on 100 (1 − α) % CI, either reject H0 (if

μ0 is not in the interval) or fail to reject (if 
μ0 is in the interval )

6. Interpret the conclusion in the content of
the problem
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Hypothesis
Testing

Null

Alternative

P-value

CI method

Example:[Breaking strength of wire, cont'd]

Suppose you are a manufacturer of construction
equipment. You make 0.0125 inch wire rope and need to
determine how much weight it can hold before breaking
so that you can label it clearly. You have breaking
strengths, in kg, for 41 sample wires with sample mean
breaking strength 91.85 kg and sample standard deviation 
17.6 kg. Using the appropriate 95% confidence interval,
conduct a hypothesis test to find out if the true mean
breaking strength is above 85 kg.

Steps:

1- H0 :   μ = 85 vs. H1 :   μ > 85

2- α = 0.05
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Hypothesis
Testing

Null

Alternative

P-value

CI method

Example:[Breaking strength of wire, cont'd]

3- One-sided test and we care about the lower

bound. So, we use (
¯
X − z1 −α

s

√n
, + ∞).

4- From the example in previous set of slides,
the CI is (87.3422, + ∞).

5- Since μ0 = 85 is not in the CI, we reject H0.

6- There is significant evidence to conclude that
the true mean breaking strength of wire is
greater than the 85kg. Hence the requirement
is met.
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Hypothesis
Testing

Null

Alternative

P-value

CI method

Example: [Concrete beams, cont'd]

10 concrete beams were each measured for flexural
strength (MPa). The data is as follows.

[1] 8.2 8.7 7.8 9.7 7.4 7.8 7.7 11.6 11.3 11.8

The sample mean was 9.2 MPa and the sample variance
was 3.0933 (MPa)2. At α = 0.01, test the hypothesis that the
true mean flexural strength is 10 MPa using a confidence
interval. Steps:

1- H0 :   μ = 105 vs. H1 :   μ ≠ 10

2- α = 0.01

3- This is two-sided test with n = 10 and 100 
(1 − α) % CI is

(
¯
X − t (n− 1 , 1 −α / 2 )

s

√n
,

¯
X + t (n− 1 , 1 −α / 2 )

s

√n
)

48 / 90



Hypothesis
Testing

Null

Alternative

P-value

CI method

Example:[Breaking strength of wire, cont'd]

4- Check that the CI is (7.393, 11.007).

5- Since μ0 = 10 is within the CI, we fail to reject
H0.

6- There is not enough evidence to conclude
that the true mean flexural strength is different
from 10 Mpa.
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Hypothesis
Testing

Null

Alternative

P-value

CI method

Example:[Paint thickness, cont'd]

Consider the following sample of observations on coating
thickness for low-viscosity paint.

[1] 0.83 0.88 0.88 1.04 1.09 1.12 1.29 1.31 1.48 1.49 1.59 1.62
1.65 1.71 [15] 1.76 1.83

Using α = 0.1, test the hypothesis that the true mean paint
thickness is 1.00 mm. Note, the 90\% confidence interval
for the true mean paint thickness was calculated from
before as (1.201, 1.499).

1- H0 :   μ = 15 vs. H1 :   μ ≠ 1

2- α = 0.1

3- This is two-sided test with n = 16, σ unknown,
so 100 (1 − α) % CI is

(
¯
X − t (n− 1 , 1 −α / 2 )

s

√n
,

¯
X + t (n− 1 , 1 −α / 2 )

s

√n
)
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Hypothesis
Testing

Null

Alternative

P-value

CI method

Example:[Breaking strength of wire, cont'd]

4- The CI is (1.201, 1.499).

5- Since μ0 = 1 is not in the the CI, we reject H0.

6- There is enough evidence to conclude that
the true mean paint thickness is not 1mm.
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Section 6.4Section 6.4

Inference for matched pairs and two-sampleInference for matched pairs and two-sample
datadata
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Hypothesis
Testing

Null

Alternative

P-value

CI method

Matched Pairs

Two-sample

Inference for matched pairs and two-sample data

An important type of application of confidence interval
estimation and significance testing is when we either have
paired data or two-sample data.

Recall: Matched pairs

Paired data is bivariate responses that consists of several
determinations of basically the same characteristics

Example: 

Practice SAT scores before and after a
preperation course

Severity of a disease before and after a
treatment

Fuel economy of cars before and after
testing new formulations of gasoline
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Hypothesis
Testing

Null

Alternative

P-value

CI method

Matched Pairs

Two-sample

Inference for matched pairs and two-
sample data
One simple method of investigating the possibility of a
consistent difference between paired data is to

1. Reduce the measurements on each object
to a single difference between them

2. Methods of confidence interval estimation
and significance testing applied to
differences (using Normal or t distributions
when appropriate)
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Hypothesis
Testing

Null

Alternative

P-value

CI method

Matched Pairs

Two-sample

Example:[Fuel economy]

Twelve cars were equipped with radial tires and driven
over a test course. Then the same twelve cars (with the
same drivers) were equipped with regular belted tires and
driven over the same course.

After each run, the cars gas economy (in km/l) was
measured. Using significance level α = 0.05 and the method
of critical values, test for a difference in fuel economy
between the radial tires and belted tires.

Construct a 95% confidence interval for true mean
difference due to tire type. (i.e μd)

car 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

radial 4.2 4.7 6.6 7.0 6.7 4.5 5.7 6.0 7.4 4.9 6.1 5.2

belted 4.1 4.9 6.2 6.9 6.8 4.4 5.7 5.8 6.9 4.7 6.0 4.9
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Hypothesis
Testing

Null

Alternative

P-value

CI method

Matched Pairs

Two-sample

Example:[Fuel economy]

car 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

radial 4.2 4.7 6.6 7.0 6.7 4.5 5.7 6.0 7.4 4.9 6.1 5.2

belted 4.1 4.9 6.2 6.9 6.8 4.4 5.7 5.8 6.9 4.7 6.0 4.9

d 0.1 -0.2 0.4 0.1 -0.1 0.1 0.0 0.2 0.5 0.2 0.1 0.3

Since we have paired data, the first thing to do is to find
the differences of the paired data. ( d = d1 − d2, where d1 is
associated with radial and d2 is associated with belted

tires.)

Then writing down the information available:

n = 12,
¯
d = 0.142, sd = 0.198

¯
d =

1
n

n

∑
i= 1
di, s2

d =
1

n − 1

n

∑
i= 1

(di −
¯
d)2

Then we just need to apply steps of hypothesis testing.
Note that the null hypothesis here is that there is no
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Hypothesis
Testing

Null

Alternative

P-value

CI method

Matched Pairs

Two-sample

Example:[Fuel economy]

1- H0 :   μd = 0 vs. H1 :   μd ≠ 0

2- α = 0.05

3- I will use the test statistics K =

¯
d− 0

sd / √n
 which

has a tn− 1 distribution assuming that

H0 is true and

d1, d2, ⋯, d12 are iid N(μd, σ
2
d)

57 / 90



Hypothesis
Testing

Null

Alternative

P-value
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Matched Pairs

Two-sample

Example:[Breaking strength of wire, cont'd]

4- K =
0.421

0.198 / √12
= 2.48 ∼ t ( 11 , 0.975 ) .

p − value = P( | T | > K) = P( | T | > 2.48)
= P(T > 2.48) + P(T < − 2.48)
= 1 − P(T < 2.48) + P(T < − 2.48)

(by software) = 1 − 0.9847 + 0.9694 = 0.03

5- Since p-value < 0.05, we reject H0.

6- There is enough evidence to conclude that
fuel economy differs between radial and belted
tires.
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Example:[Breaking strength of wire, cont'd]

A two-sided 95% confidence interval for the true mean
fuel economy difference is

(
¯
d − t (n− 1 , 1 − α / 2 )

sd

√n
 ,  

¯
d + t (n− 1 , 1 − α / 2 )

sd

√n
)

= (0.142 − t ( 11 , 0.975 )
0.198

√12
 ,  0.142 + t ( 11 , 0.975 )

0.198

√12
)

= (0.142 − 2.2
0.198

√12
 ,  0.142 + 2.2

0.198

√12
)

= (0.0164 ,  0.2764)

Note that d = d1 − d2, so the interpretation will be:

We are 95% confident that the radial tires get between
0.0166 km/l and 0.2674 km/l more in fuel economy than
belted tires on average
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Hang on for a SecondHang on for a Second
Let's review slide 58 againLet's review slide 58 again
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Hypothesis
Testing

Null

Alternative

P-value

CI method

Matched Pairs

Two-sample

Example:[Breaking strength of wire, cont'd]

 

 

 

 

p − value = P( | T | > K) = P( | T | > 2.48)
= P(T > 2.48) + P(T < − 2.48)
= 1 − P(T < 2.48) + P(T < − 2.48)

(by software) = 1 − 0.9847 + 0.9694 = 0.03
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We have seen t-student tableWe have seen t-student table

How do we get that p-value using How do we get that p-value using softwaresoftware !!! !!!
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What is happening?What is happening?

63 / 9063 / 90



Hypothesis
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Null

Alternative

P-value

CI method

Matched Pairs

Two-sample

Unlike standard Normal distribution table
which gives us probability under the standard
Normal curve, t tables are quantile tables.

i.e We use the t table (Table B.4 in Vardeman
and Jobe) to calculate quantiles.

To have exact probabilities, we need software.
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The approach in calculating p-value whenThe approach in calculating p-value when

t distribution is involvedt distribution is involved
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Hypothesis
Testing

Null

Alternative

P-value

CI method

Matched Pairs

Two-sample

Two important points:

P-value and α are both probabilities. (so ∈ [0, 1]
).

They are areas under the curve in tails under
null hypothesis.
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Alternative

P-value

CI method

Matched Pairs

Two-sample

For a random variable with ∼ t ( 11 , 0.975 ) :

By the t table, the t quantile of t ( 11 , 0.975 )  is 2.2.
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Null
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P-value
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Matched Pairs

Two-sample

For the critical value we calculated under the null
hypothesis:

The critical value calculated is K = 2.34
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Null

Alternative

P-value

CI method

Matched Pairs

Two-sample

Both together

We reject the null if p-value < α.

Remember p-value and α are areas under the
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Hypothesis
Testing

Null

Alternative

P-value

CI method

Matched Pairs

Two-sample

Example:[End-cut router]

Consider the operation of an end-cut router in the
manufacture of a company's wood product. Both a
leading-edge and a trailing-edge measurement were made
on each wooden piece to come off the router.

Is the leading-edge measurement different from the
trailing-edge measurement for a typical wood piece?

Do a hypothesis test at α = 0.05 to find out. Make a two-
sided 95% confidence interval for the true mean of the
difference between the measurements.

piece 1.000 2.000 3.000 4.000 5.000

leading_edge 0.168 0.170 0.165 0.165 0.170

trailing_edge 0.169 0.168 0.168 0.168 0.169
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Two-Sample DataTwo-Sample Data
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Two-sample data

Paired differences provide inference methods of a special
kind for comparison. Methods that can be used to
compare two means where two different unrelated
samples will be discussed next.

SAT score of high school A vs. high school B

Severity of a disease in men vs. women

Height of Liverpool soccerr players vs. Man
United soccer players

Fuel economy of gas formula type A vs.
formula type B
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Two-sample data

Notations:
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Large SamplesLarge Samples
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Testing

Null

Alternative

P-value

CI method

Matched Pairs

Two-sample

Large samples (n1 ≥ 25, n2 ≥ 25)

The difference in sample means 
¯
x1 −

¯
x2 is a natural statistic

to use in comparing μ1 and μ2.

i.e

E(
¯
X1) = μ1  E(

¯
X2) = μ2  Var(

¯
X1) =

σ2
1

n1
  Var(

¯
X2) =

σ2
2

n2

If σ1 and σ2 are known, then we have

E(
¯
X1 −

¯
X2) = E(

¯
X1) − E(

¯
X2) = μ1 − μ2

 

Var(
¯
X1 −

¯
X2) = Var(

¯
X1) + Var(

¯
X2) =

σ2
1

n1
+
σ2

2

n2
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Large samples (n1 ≥ 25, n2 ≥ 25)

If, in addition, n1 and n2 are large,

¯
X1 ∼ N(μ1,

σ2
1

n1
) is independent of 

¯
X2 ∼ N(μ2,

σ2
2

n2
) (by CLT).

So that 
¯
X1 −

¯
X2 is approximately Normal (trust me)

Z =

¯
X1 −

¯
X2 − (μ1 − μ2)

σ2
1

n1
+
σ2

2

n2

∼ N(0, 1)

√
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P-value

CI method

Matched Pairs

Two-sample

Large samples (n1 ≥ 25, n2 ≥ 25)

So, if we want to test H0 : μ1 − μ2 = # with some alternative
hypothesis, σ1 and σ2 are known, and n1 ≥ 25, n2 ≥ 25, then
we use the statistic

K =

¯
X1 −

¯
X2 − ( # )

σ2
1

n1
+
σ2

2

n2

 

which has a N(0, 1) distribution if

1. H0 is true

2. The sample 1 points are iid with mean μ1

and variance σ2
1, and the sample 2 points

are iid with mean μ2 and variance σ2
2.

3.Sample I is independent of sample II

√
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Large samples (n1 ≥ 25, n2 ≥ 25)

The confidence intervals (2-sided, 1-sided upper, and 1-
sided lower, respectively) for μ1 − μ2 are:

Two-sided 100(1 − α)% confidence interval for μ1 − μ2

(
¯
x1 −

¯
x2) ± z1 −α / 2 ∗

σ2
1

n1
+
σ2

2

n2

One-sided 100(1 − α)% confidence interval for μ1 − μ2
with a upper confidence bound

( − ∞ ,  (
¯
x1 −

¯
x2) ± z1 − α ∗

σ2
1

n1
+
σ2

2

n2
)

One-sided 100(1 − α)% confidence interval for μ with a
lower confidence bound

√

√
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Two-sample

Large samples (n1 ≥ 25, n2 ≥ 25)

If σ1 and σ2 are unknown, and n1 ≥ 25, n2 ≥ 25, then we use
the statistic

K =

¯
X1 −

¯
X2 − ( # )

σ2
1

n1
+
σ2

2

n2

and confidence intervals (2-sided, 1-sided upper, and 1-
sided lower, respectively) for μ1 − μ2:

Two-sided 100(1 − α)% confidence interval for μ1 − μ2

(
¯
x1 −

¯
x2) ± z1 −α / 2 ∗

s2
1

n1
+
s2

2

n2

√

√
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Alternative

P-value

CI method

Matched Pairs
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Large samples (n1 ≥ 25, n2 ≥ 25)

One-sided 100(1 − α)% confidence interval for μ1 − μ2
with a upper confidence bound

( − ∞ ,  (
¯
x1 −

¯
x2) ± z1 − α ∗

s2
1

n1
+
s2

2

n2
)

One-sided 100(1 − α)% confidence interval for μ with a
lower confidence bound

((
¯
x1 −

¯
x2) ± z1 − α ∗

s2
1

n1
+
s2

2

n2
) ,  + ∞)

√

√
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Matched Pairs

Two-sample

Example:[Anchor bolts]

An experiment carried out to study various characteristics
of anchor bolts resulted in 78 observations on shear
strength (kip) of 3/8-in. diameter bolts and 88 observations
on strength of 1/2-in. diameter bolts.

Let Sample 1 be the 1/2 in diameter bolts and Sample 2 be
the 3/8 indiameter bolts.

Using a significance level of α = 0.01, find out if the 1/2 in
bolts are more than 2 kip stronger (in shear strength) than
the 3/8 in bolts. Calculate and interpret the appropriate
99% confidence interval to support the analysis.

n1 = 88, n2 = 78

¯
x1 = 7.14,

¯
x2 = 4.25

s1 = 1.68, s2 = 1.3
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Example:[Anchor bolts]

n1 = 88, n2 = 78

¯
x1 = 7.14,

¯
x2 = 4.25

s1 = 1.68, s2 = 1.3
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Small SamplesSmall Samples
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P-value
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Small samples

If n1 < 25 or n2 < 25, then we need some other

assumptions to hold in order to complete inference on
two-sample data.

We need two independent samples to be iid
Normally distributed and σ2

1 ≈ σ2
2

A test statistic to test H0 : μ1 − μ2 = # against some
alternative is

K =

¯
X1 −

¯
X2 − (#)

Sp (
1
n1

+
1
n2

)

where S2
p is called pooled sample variance and is defined

as

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

√
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Small samples

Also assuming

H0 is true,

The sample 1 points are iid N(μ1, σ2
1), the sample 2

points are iid N(μ2, σ2
2),

and the sample 1 points are independent of the
sample 2 points and σ2

1 ≈ σ2
2.

Then

K =

¯
X1 −

¯
X2 − (#)

Sp (
1
n1

+
1
n2

)
∼ t (n1 +n2 − 2 )

√
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1 − α confidence intervals (2-sided, 1-sided upper, and 1-
sided lower, respectively) for μ1 − μ2 under these

assumptions are of the form:

(let ν = n1 + n2 − 2)

Two-sided 100(1 − α)% confidence interval for μ1 − μ2

(
¯
x1 −

¯
x2) ± t ( ν , 1 −α / 2 ) ∗ Sp (

1
n1

+
1
n2

)

One-sided 100(1 − α)% confidence interval for μ1 − μ2
with a upper confidence bound

( − ∞ ,  (
¯
x1 −

¯
x2) + t ( ν , 1 − α ) ∗ Sp (

1
n1

+
1
n2

)

√

√
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One-sided 100(1 − α)% confidence interval for μ with a
lower confidence bound

((
¯
x1 −

¯
x2) − t ( ν , 1 − α ) ∗ Sp (

1
n1

+
1
n2

) ,  + ∞)√
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Example:[Springs]

The data of W. Armstrong on spring lifetimes (appearing
in the book by Cox and Oakes) not only concern spring
longevity at a 950 N/ mm2 stress level but also longevity at
a 900 N/ mm2 stress level.

Let sample 1 be the 900 N/ mm2 stress group and sample 2
be the 950 N/ mm2 stress group.

900 N/mm2 Stress 950 N/mm2 Stress

216, 162, 153, 216, 225, 216,
306, 225, 243, 189

225, 171, 198, 189, 189, 135,
162, 135, 117, 162
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Example:[Springs]

Let's do a hypothesis test to see if the sample 1 springs
lasted significantly longer than the sample 2 springs.
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Example:[Stopping distance]

Suppose μ1 and μ2 are true mean stopping distances (in

meters) at 50 mph for cars of a certain type equipped with
two different types of breaking systems.

Suppose n1 = n2 = 6, 
¯
x1 = 115.7, 

¯
x2 = 129.3, s1 = 5.08, and 

s2 = 5.38.

Use significance level α = 0.01 to test H0 : μ1 − μ2 = − 10 vs. 

HA : μ1 − μ2 < − 10.

Construct a 2-sided 99% confidence interval for the true
difference in stopping distances.
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