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Simple Linear
regression Inference for curve and surface �tting

Previously, we have discussed how to describe
relationships between variables (Ch. 4). We
now move into formal inference for these
relationships starting with relationships
between two variables and moving on to more.

Simple linear regression

Recall, in Ch. 4, we wanted an equation to describe how a
dependent (response) variable, , changes in response to a
change in one or more independent (experimental)
variable(s), .

We used the notation

y

x

y = β0 + β1x + ϵ
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Simple Linear
Regression

where  is the intercept.

It is the expected value for y when .

 is the slope.

It is the expected increase (decrease) in y for
every one unit change in x

 is some error. In fact,

Recall:

Cheking if residuals are normally distributed is
one of our model assessment technique.

Goal: We want to use inference to get interval estimates
for our slope and predicted values and significance tests
that the slope is not equal to zero.

β0

x = 0

β1

ϵ

ϵ ∼iid N(0, σ2)
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Simple Linear
Regression

Variance
Estimation

Variance estimation

In the simple linear regression , the
parameters are ,  and .

We already know how to estimate  and  using least
squares.

We need an estimate for  in a regression, or "line-fitting"
context.

Definition:

For a set of data pairs  where least
squares fitting of a line produces fitted values 

 and residuals ,

is the line-fitting sample variance.

y = β0 + β1x + ϵ

β0 β1 σ2

β0 β1

σ2

(x1, y1), … , (xn, yn)

ŷ i = b0 + b1xi ei = yi − ŷ i

s2
LF

=
n

∑
i=1

(yi − ŷ i)
2 =

n

∑
i=1

e2
i

1

n − 2

1

n − 2
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Simple Linear
Regression

Variance
Estimation

MSE

Variance estimation

Associated with  are  degrees of freedom
and an estimated standard deviation of response 

.

This is also called Mean Square Error (MSE)
and can be found in JMP output.

It has  degrees of freedom because
we must estimate 2 quantities  and  to
calculate it.

 estimates the level of basic background

variation , whenever the model is an
adequate description of the data.

s2

LF
ν = n − 2

sLF = √s2

LF

ν = n − 2

β0 β1

s2

LF

σ2
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for parameters

Inference for :

We are often interested in testing if . This tests
whether or not there is a significant linear relationship
between  and . We can do this using

1. 100*  % confidence interval

2.Formal hypothesis tests

Both of these require

1. An estimate for  and

2. a standard error for 

β1

β1 = 0

x y

(1 − α)

β1

β1
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for :

It can be shown that since  and 

, then

Note that we never know , so we must estimate it using 
.

So, a % CI for  is

and the test statistic for  is

β1

yi = β0 + β1xi + ϵi

ϵi
iid
∼ N(0, σ2)

b1 ∼ N (β1, )
σ2

∑(x − x̄)2

σ2

√MSE = SLF

(1 − α)100 β1

b1 ± t(n−2,1−α/2) 
sLF

√∑(xi − ¯̄x̄)2

H0 : β1 = #

K =
b1 − #

sLF

∑(xi−¯̄x̄)2
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing]

A mixture of , polyvinyl alcohol, and water was
prepared, dried overnight, crushed, and sieved to obtain
100 mesh size grains.

These were pressed into cylinders at pressures from 2,000
psi to 10,000 psi, and cylinder densities were calculated.
Consider a pressure/density study of  data pairs
representing

in the dry pressing of a ceramic compound into cylinders.

Al2O3

n = 15

x =  the pressure setting used (psi)

y =  the density obtained (g/cc)
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing]

pressure density pressure density

2000 2.486 6000 2.653

2000 2.479 8000 2.724

2000 2.472 8000 2.774

4000 2.558 8000 2.808

4000 2.570 10000 2.861

4000 2.580 10000 2.879

6000 2.646 10000 2.858

6000 2.657
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing]

A line has been fit in JMP using the method of least
squares.
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing] 

 

Least squares regression of density on pressure of ceramic
cylinders
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing]

1.Write out the model with the appropriate estimates.

 

 

2.Are the assumptions for the model met?

 

 

 

3.What is the fraction of raw variation in  accounted for
by the fitted equation?

 

 

y

15 / 53



Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing]

4.What is the correlation between  and ?

 

 

5.Estimate .

 

 

6.Estimate .

 

 

x y

σ2

Var(b1)
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing]

7.Calculate and interpret the 95% CI for 

 

 

8.Conduct a formal hypothesis test at the 
significance level to determine if the relationship between
density and pressure is significant.

1- 

2- 

3- I will use the test statistics 

which has a  distribution assuming that

 is true and

The regression model is valid

β1

α = .05

H0 :   β1 = 0 vs. H1 :   β1 ≠ 0

α = 0.05

K =
b1−#

sLF

∑(xi−x̄)2

tn−2

H0
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing]

4- 

.

So,

p-value 

5- Since , we

reject .

6- There is enough evidence to conclude that
there is a linear relationship between density
and pressure

K = = 26.7843 > t(13,.975)=2.160
4.8667 exp −5

1.817 exp −6

= P(|T | > K) < 0.05 = α

K = 26.7843 > 2.160 = t(13,.975)

H0
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Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Inference for mean response

Recall our model

Under the model, the true mean response at some
observed covariate value  is

Now, if some new covariate value  is within the range of
the 's (we don't extrapolate), we can estimate the true
mean response at this new . i.e

But how good is the estimate?

y1 = β0 + β1xi + ϵi, ϵi
iid
∼ N(0, σ2).

xi

E(β0 + β1xi + ϵi) = β0 + β1xi + E(ϵi)

⇒ μY |x = β0 + β1xi

x
xi

x

μ̂Y |x = ŷ = b0 + b1x
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Inference for mean response

Under the model,  is Normally distributed with

and

Where x is the individual value of x that we care about
estimating  at, and  are all 's in our data.

So we can construct a  random variable by
standardizing.

μ̂Y |x

E(μ̂Y |x) = μY |x = β0 + β1x

Varμ̂Y |x = σ2( + )
1

n

(x − ¯̄x̄)2

∑(xi − ¯̄x̄)2

μY |x xi xi

N(0, 1)

Z = ∼ N(0, 1)
μ̂Y |x − μY |x

σ√( + )1
n

(x−¯̄x̄)2

∑(xi−¯̄x̄)2
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Simple Linear
Regression
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Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Inference for mean response

And when  is unknown (i.e. basically always), we replace

 with  where we can get from

JMP as root mean square error (MSE). Then

To test , we can use the test statistics

which has a  distribution if 1)  is true and 2) the
model is correct.

σ

σ SLF = √ ∑(yi − ŷ i)
21

n−2

T = ∼ t(n−2)

μ̂Y |x − μY |x

sLF√( + )1
n

(x−¯̄x̄)2

∑(xi−¯̄x̄)2

H0 : μy|x = #

K =
μ̂Y |x − #

sLF√( + )1
n

(x−¯̄x̄)2

∑(xi−¯̄x̄)2

tn−2 H0
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Inference for mean response

A 2-sided % CI for  is

and the one-sided the CI are analogous.

Note:

in the above formula,  is not given
by default in JMP.

(1 − α)100 μy|x

μ̂Y |x ± t(n−2,1−α/2)  ∗  sLF√( + )
1

n

(x − ¯̄x̄)2

∑(xi − ¯̄x̄)2

∑(xi − ¯̄x̄)2
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Inference for mean response

Using JMP we can get

Note that:

We can get  from JMP as 

sLF√( + ) = √( + (x − ¯̄x̄)2 )
1

n

(x − ¯̄x̄)2

∑(xi − ¯̄x̄)2

s
2
LF

n

s
2
LF

∑(xi − ¯̄x̄)2

^V ar(b1) (SE(b1))2
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Example:[Ceramic powder pressing]

Return to the ceramic density problem. We will make a 2-
sided % confidence interval for the true mean density of
ceramics at 4000 psi and interpret it. (Note: )

solution:

and

95
¯̄x̄ = 6000

μ̂Y |x=4000 = ŷ = b0 + b1x

= 2.375 + 4.8667 × 10−5 × (4000) = 2.569668

sLF√( + )

= √( + (x − ¯̄x̄)2 )

1

n

(x − ¯̄x̄)2

∑(xi − ¯̄x̄)2

s2
LF

n

s2
LF

∑(xi − ¯̄x̄)2
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Regression
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Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Example:[Ceramic powder pressing]

Therefore, a two-sided % confidence interval for the
true mean density at 4000 psi is

We are 95% cofident that the true mean density of the
ceramics at 4000 psi is between 2.5561 and 2.5833.

= √ + (4000 − 6000)2(1.817 × 10−6)2

= √0.000039606

= 0.0062933

0.000396

15

95

μ̂Y |x=4000 ± t(n−2,1−α/2)  ×  sLF√( + )

= 2.569648 ± t(15−2,0.975) × (0.0062933)

= 2.569648 ± 2.160 × (0.0062933) = (2.5561 ,  2.5833)

1

n

(x − ¯̄x̄)2

∑(xi − ¯̄x̄)2

26 / 53



Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Example:[Ceramic powder pressing]

Now calculate and interpret a 2-sided % confidence
interval for the true mean density at 5000 psi.

and

95

μ̂Y |x=5000 = ŷ = b0 + b1x

= 2.375 + 4.8667 × 10−5 × (5000) = 2.618335

sLF√( + )

= √( + (x − ¯̄x̄)2 )

= √ + (5000 − 6000)2(1.817 × 10−6)2

= √0.00002970 = 0.005449

1

n

(x − ¯̄x̄)2

∑(xi − ¯̄x̄)2

s2
LF

n

s2
LF

∑(xi − ¯̄x̄)2

0.00395

15
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Example:[Ceramic powder pressing]

Therefore, a two-sided % confidence interval for the
true mean density at 4000 psi is

We are 95% cofident that the true mean density of the
ceramics at 4000 psi is between 2.60656 and 2.63011

95

μ̂Y |x=4000 ± t(n−2,1−α/2)  ×  sLF√( + )

= 2.618335 ± t(15−2,0.975) × (0.005449)

= 2.618335 ± 2.160 × (0.005449)

= (2.60656 ,  2.63011)

1

n

(x − ¯̄x̄)2

∑(xi − ¯̄x̄)2
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Multiple Linear RegressionMultiple Linear Regression
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Multiple linear regression
Recall the summarization the effects of several different
quantitative variables  on a response .

Where we estimate  using the least squares
principle by minimizing the function

to find the estimates .

We can formalize this now as

where we assume .

x1, … , xp−1 y

yi ≈ β0 + β1x1i + ⋯ + βp−1xp−1,i

β0, … , βp−1

S(b0, … , bp−1) =
n

∑
i=1

(yi − ŷ)2 =
n

∑
i=1

(yi − β0 − β1x1,i − ⋯ − β

b0, … , bp−1

Yi = β0 + β1x1i + ⋯ + βp−1xp−1,i + ϵi

ϵi
iid
∼ N(0, σ2)
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Variance estimation

Based on our multiple regression model, the residuals are
of the form

And we can estimate the variance similarly to the SLR
case.

Definition:

For a set of  data vectors 

where least squares fitting is used to fit a surface,

is the surface-fitting sample variance (also called mean
square error, MSE). Associated with it are 
degrees of freedom and an estimated standard deviation

of response .

ei = yi − ŷ i = yi − (b0 + b1x1 i + ⋯ + bp−1xp−1 i

n
(x11, x21, … , xp−11, y), … , (x1n, x2n, … , xp−1n, y)

s2
SF

= ∑(y − ŷ)2 = ∑ e2
i

1

n − p

1

n − p

ν = n − p

sSF =√s2
SF 32 / 53



Simple Linear
Regression
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Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Variance estimation

Note: the SLR fitting sample variance  is the special

case of  for .

s2
LF

s2
SF

p = 2
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Example:[Stack loss]

Consider a chemical plant that makes nitric acid from
ammonia. We want to predict stack loss ( , 10 times the 
of ammonia lost) using

: air flow into the plant

: inlet temperature of the cooling water

: modified acid concentration (% circulating
acid -50% )  10

y %

x1

x2

x3

×
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Example:[Stack loss]
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Example:[Stack loss]

Then we have the fitted model as

The residual plots VS.  ,   and  look like
random scatter around zero.

The QQ-plot of the residuals looks linear,
indicating that the residuals are Normally
distributed.

This model is valid.

ŷ = −37.65246 + 0.7977x1 + 0.5773x2 − 0.0971x3

x1 x2 x3 ŷ
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Inference for parameters

We are often interested in answering questions (doing
formal inference) for  individually. For
example, we may want to know if there is a significant
relationship between  and  (holding all else constant).

\vspace{.2in}

Under our model assumptions,

for some positive constant . That are
hard to compute analytically, but JMP can help)

That means

β0, … ,βp−1

y x2

bi ∼ N(βi, diσ
2)

di, i = 0, 1, … , p − 1

= ∼ t(n−p)
bi − βi

sLF√di

bi − βi

SE(bi)
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Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Inference for parameters

So, a test statistic for  is

if 1)  is true and 2) the model is valid, and a 2-sided 
% CI for  is

or

H0 : βi = #

K = = ∼ t(n−p)
bi − #

sLF√di

bi − #

SE(bi)

H0
(1 − α)100 βi

bi ± t(n−p,1−α/2) × sLF√di

bi ± t(n−p,1−α/2) × SE(bi)
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Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Example:[Stack loss, cont'd]

Using the model fit on slide 35, answer the following
questions:

1.Is the average change in stack loss  for a one unit
change in air flow into the plant  less than 1 (holding
all else constant)? Use a significance testing framework
with .

solution:

1- 

2- 

3- I will use the test statistics  which

has a  distribution assuming that

 is true and

The regression model 
 is

valid

(y)
(x1)

α = .1

H0 :   β1 = 1 vs. H1 :   β1 < 1

α = 0.1

K =
b1−1

SE(b1)

tn−p = t17−4

H0

yi = β0 + β1xi 1 + β2xi 2 + β3xi 3 + ϵi
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Example:[Stack loss, cont'd]

4-  and  . So,

p-value 

5- Since , we

reject .

6- There is enough evidence to conclude that
the slope on airflow is less than one unit
stackloss/unit airflow. With each unit increase
in airflow and all other covariates held
constant, we expect stack loss to increase by
less than one unit.

K = = −30.7977−1
0.06744

t(13,.9) = 1.35

= P(T < K) < P(T < −3) < 0.1 = α

K = −3 < −1.35 = −t(13,.9)

H0
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Example:[Stack loss, cont'd]

2.Is the there a significant relationship between stack loss 
 and modified acid concentation  (holding all else

constant)? Use a significance testing framework with 
.

solution:

1- 

2- 

3- I will use the test statistics  which

has a  distribution assuming that

 is true and

The regression model 
 is

valid

(y) (x3)

α = .05

H0 :   β3 = 0 vs. H1 :   β3 ≠ 0

α = 0.05

K =
b3−1

SE(b3)

tn−p = t17−4

H0

yi = β0 + β1xi 1 + β2xi 2 + β3xi 3 + ϵi
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Example:[Stack loss, cont'd]

4-  and 

 . So,

p-value 

5- Since p-value , we fail to reject .

6- There is not enough evidence to conclude
that, with all other covarates held constant,
there is a significant linear relatinoship
between stack loss and acid concentration.

K = = −1.09−0.06706−0
0.0616

t(13,.975) = 2.16

= P(|T | > |K|) =

P(|T | > 1.09) > P(|T | > t(13,.975)) = 0.05α

> α H0
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Example:[Stack loss, cont'd]

3.Construct and interpret a 99% two-sided confidence
interval for .

solution:

then

We are 99% confident that for every unit increase in acid
concentration, with all other covariates held constant,
we expect stack loss to increase anywehre from -0.2525
units to 0.1185 units.

β3

t(n−p,1−α/2) = t(13,.995) = 3.012

b3 ± t(n−p,1−α/2) SE(b3) = −.0.06706 ± 3.62(0.0616)

= (−0.2525  0.1185)
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Example:[Stack loss, cont'd]

4.Construct and interpret a two-sided 90% confidence
interval for 

solution:

For a 90% two-sided CI for ,

Then

We are 90% confident that for every one degree increase
in temprature with all other covariates held constant,
stack loss is expected to increase by anywhere from 0.2834
units to 0.8713 units.

β2

β2

α = 0.1 ,  t(n−p,1−α/2) = t(13,0.95) = 1.77

b2 ± t(n−p,1−α/2) × SE(b2) = 0.5773 ± 1.77(0.166)

= (0.2834  0.87.127)
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Inference for mean response

We can also estimate the mean response at the set of
covariate values, . Under the model
assumptions, the estimated mean response, , at 

 is Normally distributed with:

and

for some constant A, that is hard to compute by hand.

(x1, x2, … , xp−1)
^μy|x

x = (x1, x2, … , xp−1)

E( ^μy|x) = μy|x = β0 + β1x1 + ⋯ βp−1xp−1

V ar( ^μy|x) = σ2A2
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Inference for mean response

Then, under the model assumptions

and

And a test statistic for testing  is

which has a  distribution under  if the model

holds true.

Z = ∼ N(0, 1)
^μy|x − μy|x

σA

T =
^μy|x − μy|x

sLF A

H0 : μy|x = #

K =
^μy|x − #

sLF A

t(n−p) H0
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Inference for mean response

A 2-sided % CI for  is

Note that the one-sided CI will be analogous.

Note: , and we can use JMP

to get this.

(1 − α)100 μy|x

^μy|x ± t(n−p,1−α/2) × sLF A

SLF A = SE( ^μy|x)
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Example:[Stack loss, cont'd]

We can use JMP to compute a 2-sided 95\% CI around the
mean response at point 3:

x1 = 62,x2 = 23,x3 = 87, y = 18
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Example:[Stack loss, cont'd]

How to get predicted values and standard errors
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Example:[Stack loss, cont'd]

Predicted values and standard errors.
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With , the 95% condidence

interval is

We are 95% confident that when air flow is 62
units, temperature is 23 degrees and the
adjusted percentage of circulating acid is 87
units, the true mean stack loss is between
18.343 and 20.151 units.

t(n−p,1−α/2) = t(13,.975) = 2.16

^μy|x ± t(n−p,1−α/2)SE( ^μy|x)

= 19.2486 ± 2.16 × (0.41785)

= (18.343 ,  20.151)
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