STAT 305: Chapter 9 Inference for curve and surface fitting Amin Shirazi

Course page: ashirazist.github.io/stat305.github.ic

Chapter 9:

Inference for curve and surface fitting

Inference for curve and surface fitting

Previously, we have discussed how to describe relationships between variables (Ch. 4). We now move into formal inference for these relationships starting with relationships between two variables and moving on to more.

Simple linear regression

Recall, in Ch. 4, we wanted an equation to describe how a dependent (response) variable, y, changes in response to a change in one or more independent (experimental) variable(s), x.

We used the notation

$$y=eta_0+eta_1x+\epsilon$$

where β_0 is the intercept.

It is the expected value for y when x = 0.

 eta_1 is the slope.

It is the expected increase (decrease) in y for every **one** unit change in x

 ϵ is some error. In fact,

$$\epsilon \sim^{ ext{iid}} N(0,\sigma^2)$$

Recall:

Cheking if residuals are normally distributed is one of our model assessment technique.

Goal: We want to use inference to get interval estimates for our slope and predicted values and significance tests that the slope is not equal to zero.

Variance Estimation

Variance estimation

Variance Estimation In the simple linear regression $y = \beta_0 + \beta_1 x + \epsilon$, the parameters are β_0 , β_1 and σ^2 .

We already know how to estimate β_0 and β_1 using least squares.

We need an estimate for σ^2 in a regression, or "line-fitting" context.

Definition:

For a set of data pairs $(x_1, y_1), \ldots, (x_n, y_n)$ where least squares fitting of a line produces fitted values $\hat{y}_i = b_0 + b_1 x_i$ and residuals $e_i = y_i - \hat{y}_i$,

$$s_{LF}^2 = rac{1}{n-2}\sum_{i=1}^n (y_i - {\hat y}_i)^2 = rac{1}{n-2}\sum_{i=1}^n e_i^2$$

is the line-fitting sample variance.

Variance estimation

Variance Estimation

MSE

Associated with s^2_{LF} are u = n-2 degrees of freedom and an estimated standard deviation of response $s_{LF} = \sqrt{s^2_{LF}}.$

This is also called **Mean Square Error (MSE)** and can be found in *JMP* output.

It has u = n - 2 degrees of freedom because we must estimate 2 quantities β_0 and β_1 to calculate it.

 s_{LF}^2 estimates the level of basic background variation σ^2 , whenever the model is an adequate description of the data.

Inference for Parameters eta_0 and eta_1

Inference for parameters

Variance Estimation

MSE

Inference for Parameters

Inference for β_1 :

We are often interested in testing if $\beta_1 = 0$. This tests whether or not there is a *significant linear relationship* between x and y. We can do this using

1. 100* (1-lpha) % confidence interval

2.Formal hypothesis tests

Both of these require

1. An estimate for eta_1 and

2. a **standard error** for β_1

Inference for β_1 :

Variance Estimation It can be shown that since $y_i=eta_0+eta_1x_i+\epsilon_i$ and $\epsilon_i\stackrel{
m iid}{\sim}N(0,\sigma^2)$, then

$$b_1 \sim N\left(eta_1, rac{\sigma^2}{\sum(x-ar x)^2}
ight)$$

MSE

Note that we never know σ^2 , so we must estimate it using $\sqrt{\mathrm{MSE}} = S_{LF}.$

Inference for Parameters

So, a
$$(1-lpha)100$$
% CI for eta_1 is

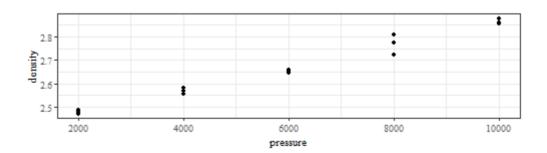
$$b_1\pm t_{(oldsymbol{n-2},1-oldsymbol{lpha}/2)} \; rac{s_{LF}}{\sqrt{\sum(x_i-\overline{x})^2}}$$

and the test statistic for $\mathrm{H}_{0}:eta_{1}=\#$ is

$$K=rac{b_1-\#}{rac{s_{LF}}{\sum(x_i-\overline{x})^2}}$$

Simple Linear	Example:[Ceramic powder pressing]
Regression	A mixture of $ m Al_2O_3$, polyvinyl alcohol, and water was prepared, dried overnight, crushed, and sieved to obtain
Variance	100 mesh size grains.
Estimation	These were pressed into cylinders at pressures from 2,000 psi to 10,000 psi, and cylinder densities were calculated.
MSE	Consider a pressure/density study of $n=15$ data pairs representing
	$x={ m the\ pressure\ setting\ used\ (psi)}$
Inference for Parameters	$y={ m ~the~density~obtained~(g/cc)}$
	in the dry pressing of a ceramic compound into cylinders.

Simple Linear	Example:[Ceramic powder pressing]				
Regression		pressure	density	pressure	density
Variance		2000	2.486	6000	2.653
Estimation		2000	2.479	8000	2.724
Lotinotion		2000	2.472	8000	2.774
MSF		4000	2.558	8000	2.808
HJE		4000	2.570	10000	2.861
Inference for		4000	2.580	10000	2.879
Parameters		6000	2.646	10000	2.858
		6000	2.657		



Example:[Ceramic powder pressing]

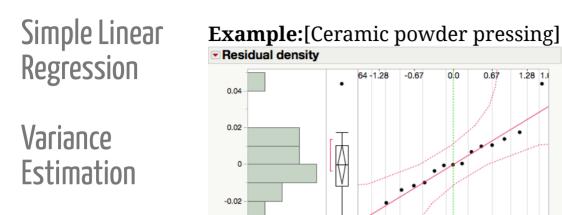
A line has been fit in JMP using the method of least squares.

Variance Estimation

MSE

Inference for Parameters

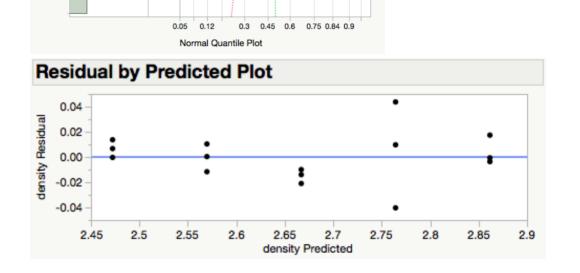
Resp	anco d	onoitu			Jin	
-	ssion l	-				
2.9	3310111					
2.85 -				ډ		
2.8 -			•			
2.75 -			· ·			
₹ 2.7-			· / ·			
Ati 2.7 - 2.65 -			1			
2.6 -						
2.55 -		×				
2.5 -	/	r				
2.45 -						
	2000		000 8000 Issure	10000		
RSquare RSquare Root Mea Mean of F	in Square Response	0	0.982193 0.980824 0.019909 2.667 15			
Observati	sis of V	ariance				
Analys		Sum of				
	13 (Mean Squa 0.2842 0.0003	13 717.00	504 > F	
Analys Source Model Error C. Total	1 (13 (14 (Squares 0.28421333 0.00515267	0.2842	13 717.06 96 Prob	504 > F	
Analys Source Model Error C. Total	1 (13 (14 (neter E	Squares 0.28421333 0.00515267 0.28936600 stimates te Std Erro 75 0.01205	0.2842 0.0003 6 or t Ratio 55 197.01	213 717.06 96 Prob <.00	504 > F	



-0.04

MSE

Inference for **Parameters**



0.0

. •

0.67

-0.67

1.28 1.0

Least squares regression of density on pressure of ceramic cylinders

Simple Linear Regression	Example: [Ceramic powder pressing] 1.Write out the model with the appropriate estimates.
Variance Estimation	
MSE	2.Are the assumptions for the model met?
Inference for Parameters	

3.What is the fraction of raw variation in *y* accounted for by the fitted equation?

Simple Linear Regression	Example: [Ceramic powder pressing] 4.What is the correlation between <i>x</i> and <i>y</i> ?
Variance Estimation	5.Estimate σ^2 .
MSE	5.Estimate 0.
Inference for Parameters	6.Estimate $\operatorname{Var}(b_1)$.

Simple Linear Regression	Example: [Ceramic powder pressing] 7.Calculate and interpret the 95% CI for eta_1		
Variance Estimation			
MSE	8.Conduct a formal hypothesis test at the $\alpha = .05$ significance level to determine if the relationship between density and pressure is significant.		
Inference for Parameters	1- H_0 : $\beta_1 = 0 vs.$ H_1 : $\beta_1 \neq 0$ 2- $\alpha = 0.05$ 3- I will use the test statistics $K = \frac{b_1 - \#}{\frac{s_{LF}}{\sum (x_i - \bar{x})^2}}$ which has a t_{n-2} distribution assuming that		

*H*₀ is true and
The regression model is valid

Variance Estimation

MSE

Inference for Parameters Example:[Ceramic powder pressing]

4-
$$K=rac{4.8667\,\mathrm{exp}\,-5}{1.817\,\mathrm{exp}\,-6}=26.7843>t_{(13,.975)=2.160}.$$
 So,
p-value $=P(|T|>K)<0.05=lpha$
5- Since $K=26.7843>2.160=t_{(13,.975)}$, we reject $H_0.$

6- There is **enough evidence** to conclude that there is **a linear relationship between density and pressure**

Inference for mean response

observed covariate value x_i is

Recall our model

Variance Estimation

 $y_1=eta_0+eta_1 x_i+\epsilon_i, \quad \epsilon_i \stackrel{
m iid}{\sim} N(0,\sigma^2).$ Under the model, the true mean response at some

MSE

$$egin{aligned} E(eta_0+eta_1x_i+\epsilon_i)&=eta_0+eta_1x_i+E(\epsilon_i)\ &\Rightarrow \mu_{Y|x}=eta_0+eta_1x_i \end{aligned}$$

Inference for Parameters

Now, if some new covariate value x is within the range of the x_i 's (we don't extrapolate), we can estimate the true mean response at this new x. i.e

Inference for mean response

$$\hat{\mu}_{Y|x}=\hat{y}=b_0+b_1x$$
 .

But how good is the estimate?

Inference for mean response

Variance Estimation

MSE

Regression

Simple Linear

Under the model, $\hat{\mu}_{Y|x}$ is Normally distributed with

$$E(\hat{\mu}_{Y|x})=\mu_{Y|x}=eta_0+eta_1 x$$

and

$$\mathrm{Var}\hat{\mu}_{Y|x} = \sigma^2(rac{1}{n} + rac{(oldsymbol{x} - \overline{x})^2}{\sum(oldsymbol{x_i} - \overline{x})^2})$$

Inference for Parameters

Where **x** is the individual value of **x** that we care about estimating $\mu_{Y|x}$ at, and x_i are all x_i 's in our data.

Inference for mean response

So we can construct a N(0,1) random variable by standardizing.

$$Z=rac{\hat{\mu}_{Y|x}-\mu_{Y|x}}{\sigma\sqrt{(rac{1}{n}+rac{(oldsymbol{x}-\overline{x})^2}{\sum(oldsymbol{x}_i-\overline{x})^2})}}\sim N(0,1)$$

Inference for mean response

Variance Estimation

Simple Linear

Regression

And when σ is unknown (i.e. basically always), we replace σ with $S_{LF} = \sqrt{\frac{1}{n-2} \sum (y_i - \hat{y}_i)^2}$ where we can get from JMP as **root mean square error (MSE)**. Then

MSE

$$T = rac{\hat{\mu}_{Y|x} - \mu_{Y|x}}{s_{LF} \sqrt{(rac{1}{n} + rac{(x-\overline{x})^2}{\sum (x_i - \overline{x})^2})}} \sim t_{(n-2)}$$

Inference for Parameters

To test $H_0: \mu_{y|x}=\#$, we can use the test statistics

Inference for mean response

$$K = rac{\hat{\mu}_{Y|x} - \#}{s_{LF} \sqrt{ig(rac{1}{n} + rac{(x-\overline{x})^2}{\sum (x_i - \overline{x})^2}ig)}}$$

which has a t_{n-2} distribution if 1) ${
m H}_0$ is true and 2) the model is correct.

Inference for mean response

Variance Estimation A 2-sided (1-lpha)100% CI for $\mu_{y|x}$ is

$$\hat{\mu}_{Y|x} \pm t_{(n-2,1-lpha/2)} \ st \ s_{LF} \sqrt{(rac{1}{n} + rac{(x-\overline{x})^2}{\sum (x_i-\overline{x})^2})}$$

MSE

and the one-sided the CI are analogous.

Inference for Parameters

Note:

in the above formula, $\sum (x_i - \overline{x})^2$ is not given by default in JMP.

Inference for mean response

JMP Shortcut Notice

Inference for mean response

Using JMP we can get

Variance Estimation

$$s_{LF}\sqrt{(rac{1}{n}+rac{(x-\overline{x})^2}{\sum(x_i-\overline{x})^2})}=\sqrt{(rac{s_{LF}^2}{n}+(x-\overline{x})^2rac{s_{LF}^2}{\sum(x_i-\overline{x})^2})}$$

MSE

Note that:

Inference for Parameters

We can get $\hat{Var}(b_1)$ from JMP as $(SE(b_1))^2$

Inference for mean response

Example:[Ceramic powder pressing]

Return to the ceramic density problem. We will make a 2sided 95% confidence interval for the true mean density of ceramics at 4000 psi and interpret it. (Note: $\overline{x} = 6000$)

 $\hat{\mu}_{Y|x=4000} = \hat{y} = b_0 + b_1 x$

 $= 2.375 + 4.8667 imes 10^{-5} imes (4000) = 2.569668$

Variance Estimation

solution:

MSE

Inference for Parameters

and

Inference for mean response

$$egin{aligned} s_{LF}\sqrt{(rac{1}{n}+rac{(x-\overline{x})^2}{\sum(x_i-\overline{x})^2})} \ &=\sqrt{(rac{s_{LF}^2}{n}+(x-\overline{x})^2rac{s_{LF}^2}{\sum(x_i-\overline{x})})} \end{aligned}$$

Simple Linear **Example:**[Ceramic powder pressing] Regression $=\sqrt{rac{0.000396}{15}}+(4000-6000)^2(1.817 imes10^{-6})^2$ Variance **Estimation** $=\sqrt{0.000039606}$ MSE = 0.0062933Therefore, a two-sided 95% confidence interval for the Inference for true mean density at 4000 psi is Parameters $\hat{\mu}_{Y|x=4000} \pm t_{(n-2,1-lpha/2)} ~ imes~ s_{LF} \sqrt{(rac{1}{n} + rac{(x-\overline{x})^2}{\sum (x_i-\overline{x})^2})}$ Inference for mean $t=2.569648\pm t_{(15-2,0.975)} imes (0.0062933)$ response $2.569648 \pm 2.160 imes (0.0062933) = (2.5561, 2.5833)$ We are 95% cofident that the true mean density of the ceramics at 4000 psi is between 2.5561 and 2.5833.

26 / 53

Example:[Ceramic powder pressing]

Now calculate and interpret a 2-sided 95% confidence interval for the true mean density at 5000 psi.

Variance Estimation

$$\hat{\mu}_{Y|x=5000} = \hat{y} = b_0 + b_1 x
onumber \ = 2.375 + 4.8667 imes 10^{-5} imes (5000) = 2.618335$$

MSE

and

Inference for Parameters

Inference for mean response

$$s_{LF}\sqrt{(rac{1}{n}+rac{(x-\overline{x})^2}{\sum(x_i-\overline{x})^2})}$$

$$=\sqrt{(rac{s_{LF}^2}{n}+(x-\overline{x})^2rac{s_{LF}^2}{\sum(x_i-\overline{x})^2})}$$

$$=\sqrt{rac{0.00395}{15}+(5000-6000)^2(1.817 imes10^{-6})^2}$$

$$=\sqrt{0.00002970}=0.005449$$

Simple Linear	Example:[Ceramic powder pressing]			
Regression	Therefore, a two-sided 95% confidence interval for the true mean density at 4000 psi is			
Variance Estimation	$\hat{\mu}_{Y x=4000} \pm t_{(n-2,1-lpha/2)} ~ imes~ s_{LF} \sqrt{(rac{1}{n} + rac{(x-\overline{x})^2}{\sum (x_i-\overline{x})^2})}$			
MSE	$=2.618335\pm t_{(15-2,0.975)} imes (0.005449)$			
Inference for Parameters	$=2.618335\pm2.160 imes(0.005449)$			
	$=(2.60656\ ,\ 2.63011)$			
Inference for mean response	We are 95% cofident that the true mean density of the ceramics at 4000 psi is between 2.60656 and 2.63011			

Multiple Linear Regression

Multiple linear regression

Variance Estimation Recall the summarization the effects of several different quantitative variables x_1, \ldots, x_{p-1} on a response y.

$$y_ipproxeta_0+eta_1x_{1i}+\dots+eta_{p-1}x_{p-1,i}$$

MSE

Where we estimate $\beta_0, \ldots, \beta_{p-1}$ using the *least squares principle* by minimizing the function

Inference for Parameters

$$S(b_0,\ldots,b_{p-1}) = \sum_{i=1}^n (y_i - \hat{y})^2 = \sum_{i=1}^n (y_i - eta_0 - eta_1 x_{1,i} - \cdots - eta_n)^2$$

Inference for mean response

to find the estimates b_0, \ldots, b_{p-1} .

We can formalize this now as

$$Y_i=eta_0+eta_1x_{1i}+\dots+eta_{p-1}x_{p-1,i}+\epsilon_i$$

MLR

where we assume $\epsilon_i \stackrel{
m iid}{\sim} N(0,\sigma^2).$

Variance Estimation in MLR

Variance Estimation

Based on our multiple regression model, the residuals are of the form

$$e_i = y_i - {\hat y}_i = y_i - (b_0 + b_1 x_{1\,i} + \dots + b_{p-1} x_{p-1\,i})$$

MSE

And we can estimate the variance similarly to the SLR case.

Definition:

Variance estimation

Inference for Parameters

Inference for mean response

MLR

For a set of n data vectors $(x_{11}, x_{21}, \ldots, x_{p-11}, y), \ldots, (x_{1n}, x_{2n}, \ldots, x_{p-1n}, y)$ where least squares fitting is used to fit a surface,

$$s_{SF}^2 = rac{1}{n-p}\sum(y-\hat{y})^2 = rac{1}{n-p}\sum e_i^2$$

is the **surface-fitting sample variance** (also called mean square error, MSE). Associated with it are $\nu = n - p$ degrees of freedom and an estimated standard deviation of response $s_{SF} = \sqrt{s_{SF}^2}$.

Variance estimation

Variance Estimation Note: the SLR fitting sample variance s^2_{LF} is the special case of s^2_{SF} for p=2.

MSE

Inference for Parameters

Inference for mean response

Variance Estimation

MSE

Inference for Parameters

Inference for mean response

Example:[Stack loss]

Consider a chemical plant that makes nitric acid from ammonia. We want to predict stack loss (y, 10 times the % of ammonia lost) using

 x_1 : air flow into the plant

 x_2 : inlet temperature of the cooling water

 x_3 : modified acid concentration (% circulating acid -50%) imes 10

Variance Estimation

MSE

Inference for Parameters

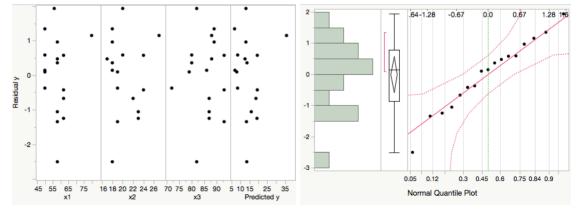
Inference for mean response

Example:[Stack loss]

	Adj an Squar Respons tions (or \$	e Error	0.975006 0.969238 1.252714 14.47059 17		
Source	DF	Sum o		quare	F Ratio
Model	3	795.8344	9 26	55.278	169.0432
Error	13	20.4008	0	1.569	Prob > F
C. Total	16	816.2352	9		<.0001*

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-37.65246	4.732051	-7.96	<.0001*
x1	0.7976856	0.067439	11.83	<.0001*
x2	0.5773405	0.165969	3.48	0.0041*
x3	-0.06706	0.061603	-1.09	0.2961



Variance Estimation

MSE

MLR

Inference for Parameters

Inference for mean response

Example:[Stack loss]

Then we have the fitted model as

 $\hat{y} = -37.65246 + 0.7977x_1 + 0.5773x_2 - 0.0971x_3$

The residual plots VS. x_1 , x_2 x_3 and \hat{y} look like random scatter around zero.

The QQ-plot of the residuals looks linear, indicating that the residuals are Normally distributed.

This model is valid.

Inference for Parameters in MLR

Inference for parameters

Variance Estimation

MSE

We are often interested in answering questions (doing formal inference) for $\beta_0, \ldots, \beta_{p-1}$ individually. For example, we may want to know if there is a significant relationship between y and x_2 (holding all else constant).

\vspace{.2in}

Under our model assumptions,

Inference for Parameters

 $b_i \sim N(eta_i, d_i\sigma^2)$

for some positive constant $d_i, i=0,1,\ldots,p-1$. That are hard to compute analytically, but JMP can help)

Inference for mean response

$$rac{b_i - eta_i}{s_{LF}\sqrt{d_i}} = rac{b_i - eta_i}{SE(b_i)} \sim t_{(n-p)}$$

MLR

Simple Linear Regression	Inference for parameters
Variance	So, a test statistic for $\mathrm{H}_{0}:eta_{i}=\#$ is
Estimation	$K=rac{b_i-\#}{s_{LF}\sqrt{d_i}}=rac{b_i-\#}{SE(b_i)}\sim t_{(n-p)}$
MSE	if 1) H_0 is true and 2) the model is valid, and a 2-sided $(1-lpha)100\%$ CI for eta_i is
Inference for	$b_i \pm t_{(n-p,1-lpha/2)} imes s_{LF} \sqrt{d_i}$
Parameters	or
Inference for mean response	$b_i\pm t_{(n-p,1-lpha/2)} imes SE(b_i)$

Simple Linear	Example:[Stack loss, cont'd]					
Regression	Using the model fit on slide 35, answer the following questions:					
Variance Estimation	1.Is the average change in stack loss (y) for a one unit change in air flow into the plant (x_1) less than 1 (holding all else constant)? Use a significance testing framework					
MSE	with $\alpha = .1$. solution:					
Inference for	1- H_0 : $\beta_1 = 1 vs.$ H_1 : $\beta_1 < 1$					

Interence tor **Parameters**

Inference for mean response

MLR

 $n_0: p_1 = 1 vs. \quad n_1: p_1$ 2- $\alpha = 0.1$

3- I will use the test statistics $K = rac{b_1 - 1}{SE(b_1)}$ which has a $t_{n-p} = t_{17-4}$ distribution assuming that

• H_0 is true and

• The regression model $y_i=eta_0+eta_1x_{i\,1}+eta_2x_{i\,2}+eta_3x_{i\,3}+\epsilon_i$ is valid

Variance Estimation

MSE

Inference for Parameters

Inference for mean response Example:[Stack loss, cont'd]

4-
$$K=rac{0.7977-1}{0.06744}=-3$$
 and $t_{(13,.9)}=1.35$. So,

p-value= P(T < K) < P(T < -3) < 0.1 = lpha5- Since $K = -3 < -1.35 = -t_{(13,.9)}$, we reject H_0 .

6- There is enough evidence to conclude that the slope on airflow is less than one unit stackloss/unit airflow. With each unit increase in airflow and all other covariates held constant, we expect stack loss to increase by less than one unit.

Variance Estimation

MSE

Inference for Parameters

Inference for mean response

Example:[Stack loss, cont'd]

2.Is the there a significant relationship between stack loss (y) and modified acid concentation (x_3) (holding all else constant)? Use a significance testing framework with $\alpha = .05$.

solution:

1-
$$H_0:~eta_3=0~vs.~~H_1:~eta_3
eq 0$$
2- $lpha=0.05$

3- I will use the test statistics $K=rac{b_3-1}{SE(b_3)}$ which has a $t_{n-p}=t_{17-4}$ distribution assuming that

- H_0 is true and
- The regression model $y_i=eta_0+eta_1x_{i\,1}+eta_2x_{i\,2}+eta_3x_{i\,3}+\epsilon_i$ is valid

MLR

Variance Estimation

MSE

Inference for Parameters

Inference for mean response Example:[Stack loss, cont'd] $\begin{array}{l}
4-K = \frac{-0.06706-0}{0.0616} = -1.09 \text{ and} \\
t_{(13,.975)} = 2.16 \text{ . So,} \\
p-value = P(|T| > |K|) = \\
P(|T| > 1.09) > P(|T| > t_{(13,.975)}) = 0.05\alpha \\
5- \text{ Since p-value} > \alpha, \text{ we fail to reject } H_0.
\end{array}$

> 6- There is not enough evidence to conclude that, with all other covarates held constant, there is a significant linear relatinoship between stack loss and acid concentration.

Example:[Stack loss, cont'd]

3. Construct and interpret a 99% two-sided confidence interval for $\beta_3.$

solution:

$$t_{(n-p,1-lpha/2)}=t_{(13,.995)}=3.012$$

MSE

then

Inference for Parameters

Simple Linear

Regression

Variance

Estimation

Inference for mean response

$$egin{aligned} b_3 \pm t_{(n-p,1-lpha/2)} \; SE(b_3) &= -.0.06706 \pm 3.62(0.0616) \ &= (-0.2525 \;\; 0.1185) \end{aligned}$$

We are 99% confident that for every unit increase in acid concentration, **with all other covariates held constant**, we expect stack loss to increase anywehre from -0.2525 units to 0.1185 units.

Variance

Estimation

Example:[Stack loss, cont'd]

4. Construct and interpret a two-sided 90% confidence interval for β_2

solution:

For a 90% two-sided CI for β_2 ,

MSE

$$lpha=0.1\ ,\ t_{(n-p,1-lpha/2)}=t_{(13,0.95)}=1.77$$

Then

Inference for Parameters

$$egin{aligned} b_2 \pm t_{(n-p,1-lpha/2)} imes SE(b_2) &= 0.5773 \pm 1.77(0.166) \ &= (0.2834 \;\; 0.87.127) \end{aligned}$$

Inference for mean response

We are 90% confident that for every one degree increase in temprature **with all other covariates held constant**, stack loss is expected to increase by anywhere from 0.2834 units to 0.8713 units.

MLR

Inference for Mean Response

Inference for mean response

Variance Estimation

MSE

We can also estimate the mean response at the set of covariate values,
$$(x_1, x_2, \ldots, x_{p-1})$$
. Under the model assumptions, the estimated mean response, $\hat{\mu_{y|x}}$, at $\boldsymbol{x} = (x_1, x_2, \ldots, x_{p-1})$ is **Normally distributed** with:

$$\mathbb{E}(\hat{\mu_{y|m{x}}}) = \mu_{y|m{x}} = eta_0 + eta_1m{x}_1 + \cdots eta_{p-1}m{x}_{p-1}$$

Inference for Parameters

$$Var(\hat{\mu_{y|m{x}}})=\sigma^2 A^2$$

for some constant A, that is hard to compute by hand.

Inference for mean response

Inference for mean response

Then, under the model assumptions

Variance **Estimation**

MSE

MLR

and Inference for

And a test statistic for testing $\mathrm{H}_0: \mu_{y|oldsymbol{x}} = \#$ is

Inference for mean response

Parameters

which has a $t_{(n-p)}$ distribution under H_0 if the model holds true.

$$K = rac{\hat{\mu_{y|m{x}}} - \#}{m{s_{LF}}A}$$

$$\Gamma = rac{\hat{\mu_{y|m{x}}} - \mu_{y|m{x}}}{m{s_{LF}}A}$$

$$\Gamma = rac{\hat{\mu_{y|m{x}}} - \mu_{y|m{x}}}{m{s_{LF}}A}$$

 $Z=rac{\mu_{y|oldsymbol{x}}-\mu_{y|oldsymbol{x}}}{\sigma^A}\sim N(0,1)$

$$T = rac{\hat{\mu_{y|x}} - \mu}{s_{IF}}$$

$$T= rac{\hat{\mu_{y|m{x}}}}{}$$

Inference for mean response

Variance Estimation A 2-sided (1-lpha)100% CI for $\mu_{y|oldsymbol{x}}$ is

$$\hat{\mu_{y|m{x}}} \pm t_{(n-p,1-lpha/2)} imes s_{LF}A$$

Note that the one-sided CI will be analogous.

MSE

Note: $S_{LF}A = SE(\hat{\mu_{y|m{x}}})$, and we can use JMP to get this.

Inference for Parameters

Inference for mean response

Example:[Stack loss, cont'd]

We can use JMP to compute a 2-sided 95% CI around the mean response at point 3:

Variance Estimation

$$x_1=62, x_2=23, x_3=87, y=18$$

MSE

Inference for Parameters

Inference for mean response

MLR

Variance Estimation

MSE

Inference for Parameters

Inference for mean response

MLR

Example:[Stack loss, cont'd]

● ● stackloss - Fit	t Least Squares	A			
 Regression Reports Estimates Effect Screening Factor Profiling Row Diagnostics 		cted 92826 13004 86409 36203			
Save Columns Model Dialog ✓ Effect Summary Local Data Filter Redo	Prediction Formula Predicted Values Residuals Mean Confidence Interval Indiv Confidence Interval Studentized Residuals				
Save Script Error 13 20.40080 C. Total 16 816.23529 Parameter Estimates Term Estimate Std Error	Hats Std Error of Predicted Std Error of Residual Std Error of Individual Effect Leverage Pairs Cook's D Influence	sidual lividual e Pairs			
Intercept -37.65246 4.732051 x1 0.7976856 0.067439 x2 0.5773405 0.165969 x3 -0.06706 0.061603 ▶ Effect Tests	StdErr Pred Formula Mean Confidence Limit Formula Indiv Confidence Limit Formula Save Coding Table	1			
Effect Details	Publish Prediction Formula Publish Standard Error Formula Publish Mean Confid Limit Formul Publish Indiv Confid Limit Formula				

How to get predicted values and standard errors

Example:[Stack loss, cont'd]

Variance Estimation

MSE

Inference for Parameters

Inference for mean response

• • •		stackloss						
▼stackloss ►	•							
Source		x1	x2	x3	у	Predicted y	StdErr Pred y	
	1	80	27	88	37	35.849282687	1.0461642094	
	2	62	22	87	18	18.671300496	0.35771273	
	3	62	23	87	18	19.248640953	0.417845385	
	4	62	24	93	19	19.423620349	0.6295687471	
Columns (6/0)	5	62	24	93	20	19.423620349	0.6295687471	
✓ x1 ✓ x2	6	58	23	87	15	16.057898713	0.5204068064	
⊿ x3	7	58	18	80	14	13.640617664	0.6090546656	
 y Predicted y * 	8	58	18	89	14	13.037076072	0.5582571612	
	9	58	17	88	13	12.526795792	0.6739851764	
StdErr Pred y	10	58	18	82	11	13.50649731	0.5519432283	
	11	58	19	93	12	13.346175822	0.6055705716	
	12	50	18	89	8	6.6555915917	0.5876767248	
Rows All rows 17 Selected 1 Excluded 0 Hidden 0 Labelled 0	13	50	18	86	7	6.8567721223	0.4891659484	
	14	50	19	72	8	8.3729550563	0.8232400377	
	15	50	19	79	8	7.903533818	0.5302896274	
	16	50	20	80	9	8.4138140985	0.5769617708	
	17	56	20	82	15	13.065807105	0.3632418427	

MLR

Predicted values and standard errors.

Variance

Estimation

With $t_{(n-p,1-lpha/2)}=t_{(13,.975)}=2.16$, the 95% condidence interval is

$$\hat{\mu_{y|m{x}}} \pm t_{(n-p,1-lpha/2)}SE(\hat{\mu_{y|m{x}}})$$

$$=19.2486\pm2.16 imes(0.41785)$$

MSE

Inference for Parameters

Inference for mean response

$$=(18.343\ ,\ 20.151)$$

Example:[Stack loss, cont'd]

We are 95% confident that when air flow is 62 units, temperature is 23 degrees and the adjusted percentage of circulating acid is 87 units, the true mean stack loss is between 18.343 and 20.151 units.