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Simple Linear
regression

Inference for curve and surface fitting

Previously, we have discussed how to describe
relationships between variables (Ch. 4). We
now move into formal inference for these
relationships starting with relationships
between two variables and moving on to more.

Simple linear regression

Recall, in Ch. 4, we wanted an equation to describe how a
dependent (response) variable, y, changes in response to a

change in one or more independent (experimental)
variable(s), x.

We used the notation

y= B+ Pix +e€
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Simple Linear
Regression

where 3 is the intercept.
It is the expected value for y when x = 0.
(1 is the slope.

It is the expected increase (decrease) in y for
every one unit change in x

€ is some error. In fact,
e ~Aid N(O, 02)
Recall:

Cheking if residuals are normally distributed is
one of our model assessment technique.

Goal: We want to use inference to get interval estimates
for our slope and predicted values and significance tests
that the slope is not equal to zero.
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Simple Linear
Regression

Variance
Estimation

Variance estimation

In the simple linear regression y = By + B1x + ¢, the
parameters are 3y, 51 and o>.

We already know how to estimate 5, and (3; using least
squares.

We need an estimate for 2 in a regression, or "line-fitting"
context.

Definition:

For a set of data pairs (z1,¥1), - - -, (Zn, Yn) Where least

squares fitting of a line produces fitted values
y; = bo + biz; and residuals e; = y; — Y,

3

e2
1
i=1

s
LF — " — 2 n—2
is the line-fitting sample variance.
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Simple Linear
Regression

Variance
Estimation

MSE

Variance estimation

Associated with s% parev = n — 2 degrees of freedom

and an estimated standard deviation of response

SLF —

2
SLF'

This is also called Mean Square Error (MSE)
and can be found in JMP output.

It has v = n — 2 degrees of freedom because
we must estimate 2 quantities 8y and 57 to
calculate it.

s% p estimates the level of basic background

variation o2, whenever the model is an
adequate description of the data.
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for parameters

Inference for S;:

We are often interested in testing if 87 = 0. This tests
whether or not there is a significant linear relationship
between x and y. We can do this using

1. 100* (1 — ) % confidence interval
2.Formal hypothesis tests
Both of these require
1. An estimate for 37 and

2. a standard error for 5;
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for Si:

It can be shown that since y; = By + B1x; + €; and

-lrI\(JiN(O o?), then

S

2

Note that we never know o

vMSE = Sy p.

So,a (1 — a)100% CI for B is

, SO we must estimate it using

SLF
V2 (zi —z)?

and the test statistic for Hy : 81 = #is

bi £t 21-a/2)

K =
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing]

A mixture of Al;Os3, polyvinyl alcohol, and water was
prepared, dried overnight, crushed, and sieved to obtain
100 mesh size grains.

These were pressed into cylinders at pressures from 2,000
psi to 10,000 psi, and cylinder densities were calculated.
Consider a pressure/density study of n = 15 data pairs
representing

x = the pressure setting used (psi)
y = the density obtained (g/cc)

in the dry pressing of a ceramic compound into cylinders.
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing]

2000
2000
2000
4000
4000
4000
6000
6000

pressure density

2.486
2.479
2.472
2.558
2.570
2.580
2.646
2.657

pressure density

6000
8000
8000
8000
10000
10000
10000

2.653
2.724
2.774
2.808
2.861
2.879
2.858

density
pa o pa
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing]

A line has been fit in JMP using the method of least
squares.

[ NN ] ceramics - Fit Least Squares
[ BEEIE AN

v ~ Response density
* Regression Plot

29
285
28
2.75
£ 27
§ 265
26
2.55
25

2.45
2000 4000 6000 8000 10000
pressura

> Effect Summary

» Lack Of Fit
v Summary of Fit
RASquare 0.982193
RSquare Adj 0.980824
Reot Mean Square Error 0.019909
Mean of Response 2.667
Observations (or Sum Wgts) 15
v Analysis of Variance
Sum of
Source DF Squares Mean Square F Ratio
Model 1 0.28421333 0.284213 717.0604
Error 13 0.00515267 0.000396 Prob>F
C. Total 14 0.28936600 <.0001"

v Parameter Estimates
Term Estimate Std Error tRatio Probs|t|

Intercept 2375 0.012055 197.01 <.0001"
pressure 4.8667e-5 1.817e-6 26.78 -.0001"
» Effect Tests
» Effect Details
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Simple Lineal' Example:[Ceramic powder pressing]

0 ~/Residual density
RegrESSIOH » j . 64-128  -0.67 0.0 o.é? 1.28 1
Variance |
Estimation “

-0.02

MSE

<
N
\\
AY
-
.
AN
.

0,05 042 03 045 06 075 084 09

|nfEI'E['ICE fOI' Residual by Predicted Plot

Parameters _ oo -
é 0.00 — E ; * .
g -0.02 -

2.45 2.5 2.55 2.6 2.65 2.7 275 2.8 2.85 2.9
density Predicted

Least squares regression of density on pressure of ceramic
cylinders
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing]

1.Write out the model with the appropriate estimates.

2.Are the assumptions for the model met?

3.What is the fraction of raw variation in y accounted for
by the fitted equation?
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing]

4. What is the correlation between x and y?

5.Estimate 2.

6.Estimate Var(b;).
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing]

7.Calculate and interpret the 95% CI for 34

8.Conduct a formal hypothesis test at the a = .05
significance level to determine if the relationship between
density and pressure is significant.

1-H02 ,31:0’08. H1! 517&0
2-a = 0.05

bi—#
SLF

> (w;—2)2
which has a ¢,,_» distribution assuming that

3- I will use the test statistics X =

o Histrue and

o The regression model is valid
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Simple Lineal' Example:[Ceramic powder pressing]

Regression "
4.8667 exp —5

Variance K = Yo 5 = 267843 > t(3,975-2.160.
So,

Estimation pvalue — P(|T| > K) < 0.05 — a

MSE 5- .Since K =26.7843 > 2.160 = (13 _g75), We
reject H,.

Inference for 6- There is enough evidence to conclude that

Parameters thedll'e is a linear relationship between density
and pressure
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Inference for mean response

Recall our model

y1 = PBo+ iz +€, € S N(0702)-

Under the model, the true mean response at some
observed covariate value x; is

E(By + Brz; + €;) = Bo + Brzi + E(e;)
= Wy|z = Bo + b1z
Now, if some new covariate value x is within the range of

the x;'s (we don't extrapolate), we can estimate the true
mean response at this new . i.e

/lY|x — @j — b0+blm

But how good is the estimate?
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Inference for mean response

Under the model, ,&Y‘m is Normally distributed with

E(iy,) = pyz = Bo + piz
and

1 r — 1)
Varfiy,, = o*(— + ( )

no D(zi—x)?

Where x is the individual value of x that we care about
estimating MYz at, and x; are all z;'s in our data.

)

So we can construct a N(0, 1) random variable by
standardizing.

o+ S)

/J =

~ N(0,1)
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Inference for mean response

And when ¢ is unknown (i.e. basically always), we replace

o with Sp.p = \/ﬁ > (yi — 9;)? where we can get from
JMP as root mean square error (MSE). Then

Byle — Ky |e

SLF\/(% + zgz(zf)g)z)

To test H, : Hylz = #, we can use the test statistics

T =

:[l’Y|a3 o #

SLF\/(% + gfm—j)f)Z)

which has a t,,_s distribution if 1) H; is true and 2) the
model is correct.

K =
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Inference for mean response

A 2-sided (1 — a)100% CI for pu,, is

. 1 (z—z)
Hy |z + t(n—2,1—a/2) * SLF (5 T Z(wz — 5)2)

and the one-sided the CI are analogous.

Note:

in the above formula, Y (z; — z)?

by default in JMP.

is not given
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Inference for mean response

Using JMP we can get

1 (@—=P | s o Sir
SLF\/( m,—E)z) \/( ~ +( )2(331—5)2)

Note that:

We can get VZLr(b1) from JMP as (SE(b;))?
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Simple Lineal' Example:[Ceramic powder pressing]

Regressmn Return to the ceramic density problem. We will make a 2-

sided 95% confidence interval for the true mean density of
Variance ceramics at 4000 psi and interpret it. (Note: x = 6000)
Estimation solution:

By |z—a000 = Y = bo + b1z

MSE — 2.375 + 4.8667 x 10> x (4000) = 2.569668

Inference for ~ and

Parameters 1 (z-2)

SLF\/(E TS @
Inference for z
mean . p
response = \/ (== + (@~ )’ E(m-Li =)
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Example:[Ceramic powder pressing]

0.000396
_ \/ = -+ (4000 — 6000)2(1.817 x 10°°)?

= 4/0.000039606

= 0.0062933

Therefore, a two-sided 95% confidence interval for the
true mean density at 4000 psi is

. 1 (@-2)
Hyjo=4000 T t(n—2,1-a/2) X SLF (E T S (2 — 5)2)

— 2569648 :|: t(15_2’0_975) X (00062933)

= 2.569648 4+ 2.160 x (0.0062933) = (2.5561 , 2.5833)

We are 95% cofident that the true mean density of the

ceramics at 4000 psi is between 2.5561 and 2.5833. 26 /53



Simple Lineal' Example:[Ceramic powder pressing]

Regression Now calculate and interpret a 2-sided 95% confidence
interval for the true mean density at 5000 psi.

Variance Ay ie—sooo = § = bo + biz
Estimation — 2.375 + 4.8667 x 10~ x (5000) — 2.618335
MSE and

1 (x — x)?
Inference for e A TP
Parameters

STr —\2 STr
Inference for = (ZE 4 (@ -72) —)

n > (z; — @)
mean z
response

0.00395
— \/ = + (5000 6000)*(1.817 x 107°%)?

= 4/0.00002970 = 0.005449 27 /53



Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Example:[Ceramic powder pressing]

Therefore, a two-sided 95% confidence interval for the
true mean density at 4000 psi is

(z — )

> (z; — )

)

) 1
NY|x:4000 + t(n—z,l—a/z) X SLF\/(; +

— 2618335 Zl: t(15_2,0_975) X (0005449)

— 2.618335 + 2.160 x (0.005449)

= (2.60656 , 2.63011)

We are 95% cofident that the true mean density of the
ceramics at 4000 psi is between 2.60656 and 2.63011
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Simple Linear L .
Regression  Multiple linear regression

Variance Recall the summarization the effects of several different
Estimation quantitative variables x1, ..., 2,1 on a response y.
Y = Bo+ 1z + o+ Bp_1Tp_14
MSE Where we estimate 3y, . . ., 8,1 using the least squares
principle by minimizing the function
Inference for n n
Parameters  S(bos---bp1) =Y (Wi—9)7 = (yi—Bo— Pz — - —
i=1 i=1

Inference for to find the estimates by, . . ., bp—1.

mean We can formalize this now as

response
P Y, =080+ Bz + -+ Bp1Tp_1, + €

MLR where we assume ¢; ifi\(Ji N(0,0?).
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Variance estimation

Based on our multiple regression model, the residuals are
of the form

€ =Y —?Qi =Y — (bo+blfﬂ1z‘+"-—|—bp—1wp—1i

And we can estimate the variance similarly to the SLR
case.

Definition:

For a set of n data vectors

(3311, L21y+++yLp-11, y), e e ey (:Eln, L2ny oy Lp—1n, y)
where least squares fitting is used to fit a surface,

1 Y (y-19) = 1 > el

n—p n—p
is the surface-fitting sample variance (also called mean
square error, MSE). Associated with itarev =n —p
degrees of freedom and an estimated standard deviation

2
Serp =

of response sgp = 1/ 8% ...
P SF SF 32 /53



Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Variance estimation

Note: the SLR fitting sample variance s
2 _
case of s, for p = 2.

2
LF

is the special

33/53



Simple Linear Example:[Stack loss]

Regression Consider a chemical plant that makes nitric acid from
ammonia. We want to predict stack loss ( ¢, 10 times the %

Variance of ammonia lost) using

Estimation x1: air flow into the plant
Zo: inlet temperature of the cooling water

MSE x3: modified acid concentration (% circulating
acid -50% ) x 10

Inference for

Parameters

Inference for

meadn

response

MLR
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SilTIp'E Linear Example:[Stack loss]
Regression . By of Fi

RSquare 0.9750086
RSquare Adj 0.969238
. Reot Mean Square Error 1.252714
Va ﬂa n ce Mean of Eesponse 14.47059
Observations (or Surm Wgts) 17
Estlmatlon + Analysis of Variance
Sum of
Source DF Squares Mean Square F Ratio
Model 3 795.83449 265.278 169.0432
Error 13 20.40080 1569 Prob>F
MSE C. Total 16 816.23529 <.0001*

¥ Parameter Estimates

Term Estimate Std Error tRatio Probxt|
Intercept -37.65246 4.732051 -7.86 <0001

Inference for e
*3 -0.06706 0.061603 -1.09 0.2961

Parameters . . I 2

Inferencefor ~ ..." = i
medn o . . . )
response 4| s

Residual y

. ]
-3 i
0.05 042 03 045 06 075084 09
45 55 65 75 1618202224286 7075 80 85 90 51015 25 35 Normal Quantile Plot
x1 x2 3 Predicted y

MLR
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Simple Linear

Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Example:[Stack loss]

Then we have the fitted model as

y = —37.65246 + 0.7977x1 4+ 0.5773z2 — 0.0971x3

The residual plots VS. x1 , z2 23 and g look like
random scatter around zero.

The QQ-plot of the residuals looks linear,
indicating that the residuals are Normally
distributed.

This model is valid.
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Inference for parameters

We are often interested in answering questions (doing
formal inference) for By, . . ., 8,_1 individually. For

example, we may want to know if there is a significant
relationship between y and x5 (holding all else constant).

\vspace{.2in}
Under our model assumptions,
b; ~ N(B;,d;o”)

for some positive constant d;,2 = 0,1, ...,p — 1. That are
hard to compute analytically, but JMP can help)

That means

bi—PBi _ bi— B
sLrVd; SE(b;)

~ t(n—p)
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Inference for parameters

So, a test statistic for Hy : 8; = # is

bi—# b —#
sLrvVd; N SE(b;)

if 1) Hy is true and 2) the model is valid, and a 2-sided
(1 — «)100% CI for j; is

bi £ t(n—p1-a/2) X SLF\/Ei

K =

~ t(n—p)

or

bi :l: t(n—p,l—a/2) X SE(bZ)
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Example:[Stack loss, cont'd]

Using the model fit on slide 35, answer the following
questions:

1.Is the average change in stack loss (y) for a one unit
change in air flow into the plant () less than 1 (holding

all else constant)? Use a significance testing framework
with a = .1.

solution:
1-Hy: Bi=1wvs. Hy: B <1
2-a = 0.1
: e b1 .
3- I will use the test statistics X = SEG) which

has a t,,_,, = t17_4 distribution assuming that

o Hjistrue and

e The regression model
yi = Bo + Bixi1 + Poxia + P3xis + € is
valid
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Simple Linear

Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Example:[Stack loss, cont'd]

4- K = % — —3 and t(13,.9) =1.35. So,

p-value
= PT<K)<PT<-3)<0l=qa

5-Since K = —3 < —1.35 = —t(y3 g), We
reject Hy.

6- There is enough evidence to conclude that
the slope on airflow is less than one unit
stackloss/unit airflow. With each unit increase
in airflow and all other covariates held
constant, we expect stack loss to increase by
less than one unit.
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Example:[Stack loss, cont'd]

2.Is the there a significant relationship between stack loss
(y) and modified acid concentation (x3) (holding all else

constant)? Use a significance testing framework with
a = .05.

solution:
1-Hy: B3=0wvs. Hy: B3#0
2-a = 0.05
3- I will use the test statistics K = Sbb?;’zbt) which

has a t,,_, = t17_4 distribution assuming that

o Hjistrue and
o The regression model

Yyi = Bo+ Bizxi1 + Paxia + P3xis + € is
valid
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Simple Linear Example:[Stack loss, cont'd]

Regressmn 4K — —obgggtl)g—o — _1.09 and
. t(13’.975) = 2.16. SO,

Variance

Estimation p-value = P([T] > | K]) =

MSE 5- Since p-value > «, we fail to reject Hy.
6- There is not enough evidence to conclude

Inference fOI' that, with all other covarates held constant,

Parameters there is a significant linear relatinoship
between stack loss and acid concentration.

Inference for

meadn

response

MLR
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Example:[Stack loss, cont'd]

3.Construct and interpret a 99% two-sided confidence
interval for (3.

solution:
tn—p1-a/2) = t(13,905) = 3.012
then

bs £ t(n_p1_as2) SE(b3) = —.0.06706 + 3.62(0.0616)
— (—0.2525 0.1185)

We are 99% confident that for every unit increase in acid
concentration, with all other covariates held constant,
we expect stack loss to increase anywehre from -0.2525
units to 0.1185 units.
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Example:[Stack loss, cont'd]

4.Construct and interpret a two-sided 90% confidence
interval for 3,

solution:
For a 90% two-sided CI for B,
a=0.1,tu p1a/2) =tasess) = 1.77
Then
by £t pi-as2) X SE(b2) = 0.5773 = 1.77(0.166)
= (0.2834 0.87.127)

We are 90% confident that for every one degree increase
in temprature with all other covariates held constant,
stack loss is expected to increase by anywhere from 0.2834
units to 0.8713 units.
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Simple Linear
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Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Inference for mean response

We can also estimate the mean response at the set of
covariate values, (21, Z2, . . . , £,—1). Under the model

assumptions, the estimated mean response, ,u;|m, at

x = (x1, 2, ..., Ty 1) is Normally distributed with:

]E(Mj;|w) — Kylz — Bo+ Bix1 + - -+ ,Bp—lmp—l
and
Var(p,e) = 0°A°

for some constant A, that is hard to compute by hand.
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Simple Linear
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Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Inference for mean response

Then, under the model assumptions

Myl T Hyla

4 gA

N(0,1)
and

. 1“’;|:13 — Myl

T
SLFA

And a test statistic for testing Hy : p,, = #is

K
SLFA

which has a ¢(;,_, distribution under H, if the model
holds true.
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Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Inference for mean response

A 2-sided (1 — a)100% CI for f,,, is
Hyle T tnp1-a/2) X SLFA

Note that the one-sided CI will be analogous.

Note: SppA = SE(u,),), and we can use JMP
to get this.
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Example:[Stack loss, cont'd]

We can use JMP to compute a 2-sided 95\% CI around the
mean response at point 3:

x1 =62,x9 = 23,23 =87,y =18
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Simple Linear Example:[Stack loss, cont'd]

RegrESSIOH | [ NN ] stackloss - Fit Least Squares -
Bl = @ LF P Ry

[immmm| |
!

V H v = Dacnanca
a rla n Ce ' Regression Reports > A
0 o | Estimates > =
Estl m at I 0 n | Effect Screening > e
Factor Profiling [ -
Row Diagnostics > | =
Prediction Formula f
MSE j ' Predicted Values i
Model Dialog e E
s Ll ) | Mean Confidence Interval (
1 Local Data Filter Indiv Confidence Interval i
Inference for Redo [ Studentized Residuals ‘i
Save Script > Hats £
| Std Error of Predicted c
Parameters Error 13 20.40080 Std Error of Residual :
St 16 81623529 gq Error of Individual £
¥ Parameter Estimates Effect Leverage Pairs ¢
Term Estimate Std Error  C00K's D Influence c
I nfe rence fO[ Intercept -37.65246 4.732051 i
%1 0.7976856 0.067439 StdErr Pred Formula |
m ea n x2 0.5773405 0.165969 Mean Confidence Limit Formula |
x3 -0.06706 0.061603  |ndiv Confidence Limit Formula |
res OI'ISE » Effect Tests Save Coding Table
p » Effect Details Publish Prediction Formula
Publish Standard Error Formula
Publish Mean Confid Limit Formula
MLR Publish Indiv Confid Limit Formula

How to get predicted values and standard errors 5153



Simple Linear

Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Example:[Stack loss, cont'd]

800 stackloss
|'stackloss (R T
I Source - xi x2 x3 y Predictedy  StdErr Pred y
1 80 27 88 37 35849282687 1.0461642004
2 B2 22 87 18 18671300496 035771273
3 62 23 87 18 19248640053 0417845385
4 B2 24 93 19 19.423620349 0.6295687471
"‘C"'”"‘”S (60) 5 62 24 93 20 10423620340 06205687471
‘E 6 58 23 87 15 16057898713 05204068064
4 7 58 18 80 14 13640617664 0.6090546656
4y 8 58 18 89 14 13037076072 05582571612
:;ﬁfﬁgr O 58 17 88 13 12526795792 0.6739851764
10 5 18 82 11 1350649731 05519432283
1 88 19 93 12 13346175822 0.605570716
12 50 18 89 8 66555915917 0.5876767248
- fons 19 50 18 86 7 68567721293 0.4801650484
el = 14 50 19 72 8 83729550563 0.8232400377
Selected 1 15 50 19 70 8 7903533818 05302806274
Sé:(liuded g 16 50 20 80 9 84138140085 0.5769617708
iaden
o ; 17 5 20 82 15 13065807105 0.3630418427

Predicted values and standard errors.
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Simple Linear Example:[Stack loss, cont'd]

Regression With ¢(,,_ 1-a/2) = t(13,.975) = 2.16, the 95% condidence
interval is
Variance ) )
. . :u’a:j:tn—,—oz SE(/’L 213)
Estimation e = Hnpdma 2By
— 19.2486 + 2.16 x (0.41785)
MSE
— (18.343, 20.151)
Inference for

We are 95% confident that when air flow is 62
Parameters units, temperature is 23 degrees and the
adjusted percentage of circulating acid is 87
| f f units, the true mean stack loss is between
nierence for 18.343 and 20.151 units.

meadn
response

MLR
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