STAT 305 Quiz II Reference Sheet

Numeric Summaries

mean
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

population variance $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$
population standard deviation $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$
sample variance $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$
sample standard deviation $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$

Linear Relationships

$$\begin{array}{lll} \mbox{Form} & y \approx \beta_0 + \beta_1 x \\ \mbox{Fitted linear relationship} & \hat{y} = b_0 + b_1 x \\ \mbox{Least squares estimates} & b_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \\ & b_1 = \frac{\sum_{i=1}^n x_i y_i - n \bar{x} \bar{y}}{\sum_{i=1}^n x_i^2 - n \bar{x}^2} \\ & b_0 = \bar{y} - b_1 \bar{x} \\ \mbox{Residuals} & e_i = y_i - \hat{y}_i \\ \mbox{sample correlation coeffecient} & r = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2 \sum_{i=1}^n (y_i - \bar{y})^2}} \\ & r = \frac{\sum_{i=1}^n x_i y_i - n \bar{x} \bar{y}}{\sqrt{(\sum_{i=1}^n x_i^2 - n \bar{x}^2)(\sum_{i=1}^n y_i^2 - n \bar{y}^2)}} \\ \mbox{coeffecient of determination} & R^2 = (r)^2 \\ & \frac{\sum_{i=1}^n (y_i - \bar{y})^2 - \sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \bar{y})^2} \end{array}$$

Multivariate Relationships

Form	$y \approx \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k$
Fitted relationship	$\hat{y} \approx b_0 + b_1 x_1 + b_2 x_2 + \ldots + b_k x_k$
Residuals	$e_i = y_i - \hat{y}_i$
Sums of Squares	$SSTO = \sum_{i=1}^{n} (y_i - \bar{y})^2$
	$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
	$SSR = SSTO - SSE = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$
coeffecient of determination	$R^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2} - \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$
	$R^2 = \frac{\text{SSTO} - \text{SSE}}{\text{SSTO}}$
	$R^2 = \frac{\text{SSR}}{\text{SSTO}}$
	$\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2 - \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$

Functions

Quantile Function Q(p) For a univariate sample consisting of n values that are ordered so that $x_1 \leq x_2 \leq \ldots \leq x_n$ and value p where $0 \leq p \leq 1$, let $i = \lfloor n \cdot p + 0.5 \rfloor$. Then the quantile function at p is:

$$Q(p) = x_i + (n \cdot p + 0.5 - i)(x_{i+1} - x_i)$$

Basic Probability

Definitions

Random experiment		A series of actions that lead to an observable result. The result may change each time we perform the experiment.
Outcome		The result(s) of a random experiment.
Sample Space (S)		A set of all possible results of a random experiment.
Event (A)		Any subset of sample space.
Probability of an event ((P(A))	the likelihood that the observed outcome of a random experiment is one of the outcomes in the event.
$A^C \\ A \cap B \\ A \cup B$		The outcomes that are not in A . The outcomes that are both in A and in B . The outcomes that are either A or B .
General Rules		
Probability A given B	P(A B)	$P = P(A \cap B)/P(B)$
Probability A and B	$P(A \cap$	B) = P(A B)P(B) = P(B A)P(A)
Probability A or B	P(A or	P(B) = P(A) + P(B) - P(A, B)

Independence

Two events are called independent if $P(A, B) = P(A) \cdot P(B)$. Clever students will realize this also means that if A and B are independent then P(A|B) = P(A) and P(B|A) = P(B).

Joint Probability

Joint Probability	The probability an outcome is in event A and in event $B = P(A, B)$.
Marginal Probability	If $A \subseteq B \cup C$ then $P(A) = P(A \cap B) + P(A \cap C)$.
Conditional Probability	For events A and B, if $P(B) \neq 0$ then $P(A B) = P(A \cap B)/P(B)$.

Discrete Random Variables

General Rules

Probability function	$f_X(x) = P(X = x)$
Cumulative probability function	$F_X(x) = P(X \le x)$
Expected Value	$\mu = E(X) = \sum_{x} x f_X(x)$
Variance	$\sigma^2 = Var(X) = \sum_x (x - \mu)^2 f_X(x)$
	or, $Var(X) = \sum_{i=1}^{n} x_i^2 \cdot f(x_i) - \mu^2$
	or, $Var(X) = \sum_{x} (x - EX)^2 f(x) = E(X^2) - (EX)^2$
Standard Deviation	$\sigma = \sqrt{Var(X)}$

Joint Probability Functions

nt.	Joint Probability Function	$f_{XY}(x,y) = P[X = x, Y = y]$
	Marginal Probability Function	$f_X(x) = \sum_y f_{XY}(x, y)$ $f_Y(y) = \sum_x f_{XY}(x, y)$
	Conditional Probability Function	$\begin{split} f_{X Y}(x y) &= f_{XY}(x,y) / f_Y(y) \\ f_{Y X}(y x) &= f_{XY}(x,y) / f_X(x) \end{split}$

Geometric Random Variables

X is the trial count upon which the first successful outcome is observed performing independent trials with probability of success p.

Possible Values	$x = 1, 2, 3, \dots$
Probability function	$P[X = x] = f_X(x) = p(1 - p)^{x - 1}$
Expected Value	$\mu = E(X) = \frac{1}{p}$
Variance	$\sigma^2 = Var(X) = \frac{1-p}{p^2}$

Binomial Random Variables

X is the number of successful outcomes observed in n independent trials with probability of success p.

Possible Values	$x = 0, 1, 2, \dots, n$
Probability function	$P[X = x] = f_X(x) = \frac{n!}{(n-x)!x!} p^x (1-p)^{n-x}$
Expected Value	$\mu = E(X) = np$
Variance	$\sigma^2 = Var(X) = np(1-p)$

Poisson Random Variables

X is the number of times a rare event occurs over a predetermined interval (an area, an amount of time, etc.) where the number of events we expect is λ .

Possible Values $x = 0, 1, 2, 3, \dots$ Probability function $P[X = x] = f_X(x) = \frac{e^{-\lambda}\lambda^x}{x!}$ Expected Value $E(X) = \lambda$ Variance $Var(X) = \lambda$