STAT 305 Quiz II Reference Sheet

Numeric Summaries

mean	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
population variance	$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$
population standard deviation	$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$
sample variance	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$
sample standard deviation	$s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n} (x_i - \bar{x})^2}$

Functions

Quantile Function Q(p) For a univariate sample consisting of n values that are ordered so that $x_1 \leq x_2 \leq \ldots \leq x_n$ and value p where $0 \leq p \leq 1$, let $i = \lfloor n \cdot p + 0.5 \rfloor$. Then the quantile function at p is:

$$Q(p) = \begin{cases} x_i & \lfloor n \cdot p + .5 \rfloor = n \cdot p + .5\\ x_i + (np - i + .5) (x_{i+1} - x_i) & \lfloor n \cdot p + .5 \rfloor \neq n \cdot p + .5 \end{cases}$$

Measures of Central Tendency

- $Q\left(\frac{1-.5}{n}\right)$ is called the **minimum** and $Q\left(\frac{n-.5}{n}\right)$ is called the **maximum** of a distribution.
- Q(.5) is called the **median** of a distribution.
- Q(.25) and Q(.75) are called the first (or lower) quartile and third (or upper) quartile of a distribution, respectively.
- The interquartile range (IQR) is defined as

$$IQR = Q(.75) - Q(.25)$$

• An **outlier** is a data point that is larger than Q(.75) + 1.5 * IQR or smaller than Q(.25) - 1.5 * IQR.