
The following data were gathered for an analysis on Manganese in some engineering system. Read the data and answer the questions based on the data.

• Draw the stem and leaf diagram:

• Make a frequency table

Class	Interval	Tally	Frequency	Relative	Cumulative
	Center			Frequency	r.f
66-70	68	1	\	.05=1/20	.05
71-75	73	1/11	4	٠ 20 = ١٠٠٠	.25
76-80	78	++++ 1/1/	9	.45	.7
81-85	83	(//)	4	.20	. 9
86-90	88	/	\	. 05	.95
91-95	93	1	120	.05	1

• Calculate the quantiles

	i	1	2	3	4	5	6	7	8	9	10
	Data	68	73	74	74	75	76	77	78	79	79
P =	$\frac{i-0.5}{n}$	0.025	0.075	0.125	0.175	0.225	0.275	0.325	o.375	0.425	0.475
	Q(p)	68	73	74	74	75	76	77	78	79	75
	$Q_N(p)$	-1.96	_1.44	-1.15	94	- 7 6	59	- · 45	31	81	8
	i	11	12	13	14	15	16	17	18	19	20
-	Data	79	79	80	80	81	81	81	83	88	91
	$\frac{i-0.5}{n}$ 0	.525	0.575	o .625	0.675	0.725	0.775	0.825	0.875	0.925	0.975
	Q(p)	79	79	80	8.	81	81	81	83	88	91
	$Q_N(p)$	+.0.6	81.+	.31	. 45	.59	.45	•93	1.15	1.43	36.1

• Find the median, 1^{st} quartile and 3^{rd} quartile

$$P=0.5$$
 -> $[0.5]=[0.5]$

- Find the Normal quantiles and add them to the quantile table above
- Plot the Normal quantiles vs. the data quantiles

$$Q(.25) = 75.5 \qquad Q(.25) - 1.52QR = 75.5 - 8.25$$

$$Q(.5) = 79 \qquad = 67.25$$

$$Q(.75) - 81 \qquad Q(.75) + 1.5 \times 1QR = 81 + 8.25$$

$$Q(.75) - Q(.25) \qquad = 89.25$$

$$= 81 - 75.5 = 5.5$$

$$1.5 \times 1QR = (1.5)(5.5) = 8.25$$
• Draw the boxplot
• Draw the boxplot
• Draw the boxplot
• Draw the boxplot

$$Q(.15) = X_5 + [n.e - 1.4.5] (X_6 - X_5) = 75.5$$

$$= 75 + [0.5] (76 - 75) = 75 + (0.5) (1) = 75.5$$

$$Q(.75) = X_{15} + [n.e - 1.4.5] (X_{16} - X_{15}) = 81$$

Question 3

• Give the coordinates (on a regular Paper graph)

of the upper right & lower left point that

would appear on a normal plot of data,

upper right = largest quantile = $Q_N(.975) = 1.96$ lower left = lowest quantile Q(.975) = 91

Normal Paper = using Normal quantile 1 regular paper = Data set quantiles.

lower left =
$$\frac{Q}{N}(0.025) = -1.96$$

Coordinates : (P, Q(P1)

So, tre coordinates are on (equial papel :) lower left: (0.025,68)
upper right: (0.975,91) on Dolmal Paper =] lower left: (0.025,-1.96)
upper light, (.975, 1.96) A Nosmal (91,1.96) (Q(1975), Q, (1975)) (Theoretical) quartile $Q_{N}(P)$ quantiles

 $Q(\rho)$

$$(68, -1.96)$$
 (0.025)
 (0.025)