Describing
Relationships

|dea

Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals

Assessment

Normality of residuals

e In addition to the residual versus predicted plot, there

are other residual plots we can use to check
regression assumptions.

A histogram of residuals and a normal probability
plot (QQ-plot) of residuals can be used to evaluate
whether our residuals are approximately normally
distributed.

o However, unless the residuals are far from
normal or have an obvious pattern, we generally
don’t need to be overly concerned about
normality.

Note that we check the residuals for normality. We
don’t need to check for normality of the raw data. Our
response and predictor variables do not need to be
normally distributed in order to fit a linear regression
model.
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Describing
Relationships

|dea

Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals

Assessment

Normality of residuals

Draw a histogram of the residuals (review the JMP toturial
for histograms)

L

It seems the residuals are not normaly distributed in this
example.The residuals have a left skewed distirbution.
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Relationships

|dea

Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals

Assessment

Normality of residuals

As the instructions on the JMP toturials (and also HW #3),
you can draw Normal QQ-plot to evaluate if the residuals
meet the assumptions of normaly distributed.

Plotting Normal QQ-plot of the same example

0.999

e Again, the QQ-plot also confirms that the assumption
of Normal distribution of residuals is violated to some
extend in this example.

« More examination is required to fix the issue or to
find the problem. 45/ 88
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Describing
Relationships

Idea

Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals

Assessment

R2

Coeffecient of Determination (R?)

N —

We know that our responses have variability - they are not
always the same. We hope that the relationship between

our response and our éxplanator

of the variability in our responses.

variables explains some

'>¢%ft§ww0ﬂT“~Q_C’X5)

R? is the fraction of the total variability in the response (y)
accounted for by the fitted relationship.

« When R? is close tq@we have explained almost all of

the_variability in our response using the fitted
relationship (i.e., the fitted relationship is good).

« When R? is close to 0 we have explained almost none
of the variability in our response using the fitted
relationship (i.e., the fitted relationship is bad).

There are a number of ways we can calculate R?. Some
require you to know more than others or do more work by

hand.
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Relationships

Idea

Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals

Assessment

R2

Calculating Coeffecient of Determination (R?

Method a. Using the data and our fitted relationship:

For an experiment with response values y1, Y2, . - -, Yn

and fitted values g, ¥, . . . , ,, we calcuate the following:

)\ —_—

i (Wi =) = 2w —2 %
Z?zl(yi - Qf

« This is the longest way to calculate R? by hand.

R? =

It requires you to know every response value in the
data (y;) and every fitted value (3 )
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Relationships

Idea

Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals

Assessment

R2

Calculating Coeffecient of Determination (R?

Method b. Using Sums of Squares

For an experiment with response values y1, Y2, . - -, Yn
and fitted values g, ¥, . . . , ,, we calcuate the following:

« Total Sum of Squares (SSTO): a baseline for the
variability in our response.

TO = . —7)?
SST0= (i =9)

o Error Sum of Squares (SSE): The variability in the data
after fitting the line

SSE=> (yi —4,)°
~ i=1

e Regression Sum of Squares (SSR): The variability in
the data accounted for by the fitted relationship

SSR = S85TO — SSE
49 / 88
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Describing

Relationships Calculating Coeffecient of Determination (R
Idea Method b. Using Sums of Squares
Fitting Lines We can write the R? using these sums of squares:
Best Estimate R2_ SSR _ SSTO — SSE _he SSE
= SSTO SSTO SSTO
Good Fit / e Q: What's the advantage of using the sums of squares?
Correlation e A: The values of SSTO, SSE, and SSR are used in many
statistical calculations. Because of this, they are
Residuals commonly reported by statistical software. For
instance, fitting a model in JMP produces these as part
Assessment of the output.
R2
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Idea

Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals

Assessment

R2

Calculating Coeffecient of Determination (R?

Method c. A special case when the relationship is linear

If the relationship we fit between y and x is linear, then
we can use the sample correlation, r to get:

R? =((r)?

NOTE: Please, please, please, understand that this is only
true for linear relationships.

W
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Relationships

Idea

Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals

Assessment

R2

J_ P
S

Calculating Coeffecient of Determination (R?

Example: Stress on Bars

stress

2. 2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0
(kg/mm”)
lifetme .o oo o5 o1 g2 37 38 45 46 19
(hours)

Earlier, we found 7 = —0.795.

Since we are describing the relationship using a line, then
we can use the special case:

—>R? = (r)* = (—0.795)* = 0.633

In other words, 63.3% of the variability in the
lifetime of the bars can be explained by the
linear relationship between the stress the bars
were placed under and the lifetime.

B
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Relationships

Idea

Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals

Assessment

R2

Precautions

Precautions about Simple Linear Regression (SLR)

e 7 only measures linear relationships

« R? and r can be drastically affected by a few unusual
data points.

Using a computer

You can use JMP (or R) to fit a linear model. See
SXaeiBoara for videos on fitting a model using JMP.
CounCSL ?“6&
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Multiple Linear Regression



Describing
Relationships

Idea

Fitting Lines )
Best Estimate

. aude e
Good Fit Vineel

ressia

Correlation
Residuals *
Assessment
R?

Fitting Curves

MLR

Linear Relationships

The idea of simple linear regression can be
generalized to produce a powerful engineering tool:
Multiple Linear Regression (MLR).

@is associated with line fitting

MLR is associated with curve fitting and surface
fitting

What we mean by multiple linear relationship is that
the relation between the variables and the response is
linear in their parameters.

o Multiple linear regression in general: when
there are more than one experimental variable in
the experiment

y = Bo + B1x1 + Baxa + - - + Brxk

o polynomial equation of order k:

y=ﬂ0+ﬁ1w+ﬁ2w2++53x3+---+Bkmk 55/ 88



Describing

Relationships J v '
Non-Linear Relationships
Idea
Fitti i e And there are also non-linear relationship where the
1tting Lines

relationship between the variables and the response is

i non-linear in their parameters.
Best Estimate

= By + e’z
Good Fit y=Fo
Correlation
Y = Bo
Residuals B1 + Baz
Assessment
R2

Fitting Curves

MLR
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Describing

Relationships A J
nissue
Idea
Fitting Lines » The point is that fitting curves and surfaces by the

least square method needs a lot of matrix algebra

Best Estimate concepts and it is difficult to be done by hand.

« We need software to fit surfaces and curves.
Good Fit
Correlation
Residuals
Assessment
R2
Fitting Curves

MLR
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Describing

Relationships Example:
Idea Compressive Strength of Fly Ash Cylinders as a Function of
Amount of Ammonium Phoshate Additive
Fitting Lines
. Compressive . Compressive
. Ammonium Ammonium
Best Estimate Phosphate(%) SIETE Phosphate(%) SIEIE
(psi) (psi)

Good Fit 0 1221 3 1609
Correlation 0 LAV 3 1627

0 1187 3 1642
Residuals 1 1555 4 1451
Assessment 1 1562 4 1472

1 1575 4 1465
R2

2 1827 5 1321
Fitting Curves 2 1839 5 1289

2 1802 3 1292

MLR
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Describing
Relationships Example:

Idea Compressive Strength of Fly Ash Cylinders as a Function of
Amount of Ammonium Phoshate Additive

Fitting Lines

Best Estimate

Good Fit 1600

Strength

Correlation

14001

Residuals .

Assessment .
Ammonism -
.Z%l2

Fitting Curves

MLR
60 / 88



Describing

Relationships Example:
Idea Compressive Strength of Fly Ash Cylinders as a Function of
Amount of Ammonium Phoshate Additive
Fitting Lines
lzeod  F=1500-0.638 x .
Best Estimate —~
Good Fit 1600 I~
= :
: A
. £ " B
Correlation = :
1400
Residuals .
Assessment - ; . p
) Ammonism -
R2

Fitting Curves

MLR
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Describing
Relationships Example:

Idea Compressive Strength of Fly Ash Cylinders as a Function of
Amount of Ammonium Phoshate Additive

Fitting Lines

Leod  F=1180+633 x - 214 X7+ 18.3 .

Best Estimate

Good Fit 1600

Strength

Correlation

14001

Residuals

Assessment
R2

Fitting Curves

MLR
62 /88



One More Example  Fitting Surface and Curves



Describing
Relationships Example: Hardness of Alloy

Idea A group of researchers are studying influences on the
hardness of a metal alloy. The researchers varied the
Fitting Lines percent copper and tempering temperature, measuring

the hardness on the Rockwell scale.

Best Estimate The goal is to describe a relationship between our

response, Hardness, and our two experimental variables,

Good Fit the percent copper (z1) and tempering temperature (z5).

Correlation
Residuals
Assessment
R?

Fitting Curves

MLR
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Relationships

Idea

Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals
Assessment
R?

Fitting Curves

MLR

Example: Hardness of Alloy

Percent Copper Temperature Hardness

0.02

0.10

0.18

1000
1100
1200
1300
1000
1100
1200
1300
1000
1100
1200
1300

78.9
65.1
55.2
56.4
80.9
69.7
57.4
55.4
85.3
71.8
60.7
58.9
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Describing
Relationships

Idea

Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals
Assessment
R?

Fitting Curves

MLR

Example: Hardness of Alloy

Theoretical Relationship:

We start by writing down a theoretical relationship. With
one experimental variable, we may start with a line.
Extending that idea for two variables, we start with a
plane:

y = Bo + B1x1 + Baxo
Observed Relationship:

In our data, the true relationship will be shrouded in
error.

y = Bo + Bix1 + Baxa2 + errors

—

signal | 4 [noise]
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Describing
Relationships Example: Hardness of Alloy

Idea Fitted Relationship:

If we are right about our theoretical relationship, though,
and the signal-to-noise ratio is small, we might be able to
estimate the relationship:

Fitting Lines

Best Estimate
y = by + bix1 + baxs

Good Fit. L/ / \

Correlation \ 2

ot

? teed.
Residuals m{’iec/ )

Assessment
R2
Fitting Curves

MLR
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Describing
Relationships Example: Hardness of Alloy

Idea Enter the data in JMP
Fitting Lines °ce i )
~untitled "1 K ~+ 0
. & percent_copper temperature hardness
Best Estimate 1 0.02 1000 78.9
-Columrs @0) | o0 1m0l o
. 4 perce...copper . .
Good Fit ,Emmmmg’ 4 0.02 1300 56.4
4hardness 5 0.1 1000 80.9
. 6 0.1 1100 69.7
Correlation ~Rows 7 0.1 1200  57.4
All rows 12 8 0.1 1300 55.4
. Selected 0 9 0.18 1000 85.3
ReSIdualS Excluded 0 10 0.18 1100 71.8
Hidden 0 11 0.18 1200 60.7
R2

Fitting Curves

MLR
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Describing
Relationships Example: Hardness of Alloy

Idea In JMP, go to

Fitting Lines Analyze >G"’C Modea

to define the model you are fitting:

Best Estimate

[ ] [ ] Fit. Mog ASQ
1 =M | ificati n
Good Fit ‘Model Specification (.6 |

Personahty: Standard Least Squares
~8 Columns v Jihardness Emphasis:  Minimal Report

. A percent_copper optional Help

Correlatlon —/7 A temperature Recall | feep caiog open

A hardness weis | [ optional numeric Remove

ReSidualS Yaliaton \optiona/

= __|optional

Assessment ercent corper %

|
rea_|| optional numeric |
|
|

temperature

Nest

R2 -
Degree
Attributes =
Transform =

Fitting Curves

MLR
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Describing
Relationships Example: Hardness of Alloy

Idea After clicking Run we get the following model fit results:
Fittin Lines [ NON J untitled - Fit Least Squares
8 W e+ 9 Le P %
. ~~Response hardness
Best Estimate P
> Effect Summary
_?(' Summary of Fit J 2’1
Good Fit RSquare 0.899073 |
RSquare Adj 0.876645
Root Mean Square Error 3.790931
3 Mean of Response 66.30833
Correlation Observations (or Sum Wgts) 12
- Analysis of Variance
Residuals Sum of
Source DF Squares Mean Square F Ratio
Model 2 1152.1888 576.094 40.0868
Assessment Error 9 120.3404 14.371 Prob > F
C 92 <.0001*
9 —“> " Parameter Estimates
R Term imate Std Error t Ratio Prob>|t|
\'-’s &— Intercept 161.33646§11.43285 14.11 <.0001*

L /percent_copper 32.96875 16.75371 1.97 0.0806

Fitting Curves ‘Yo, (iemperature -0.0855 ).009788  -8.74 <.0001*
> Effect Tests
=

MLR \9 » Effect Details
9
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Describing
Relationships

Idea

Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals
Assessment
R?

Fitting Curves

MLR

Example: Hardness of Alloy

From this output, we can get the value of R2, the
coeffecient of determination:

* Summary of Fit
LRSquare O@\/

RSquare Adj 0.876645
Root Mean Square Error 3.790931
Mean of Response 66.30833
Observations (or Sum Wgts) 12

Since R? = 0.899073, we can say

—

89.9074% of the variability in the hardness we
—-—-> observed can be explained by its relationship

with temperature and percent copper.
— e — —~ ~————
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Describing
Relationships Example: Hardness of Alloy

Idea From this output, we can get the sum of squares.

~ Analysis of Variancé

Fitting Lines :
Sum of
. SsQ Source DF Squares Mean Square F Ratio ‘>k
Best Estimate” " <_ Model 1152.1888 576.094 40.0868

129.3404
1281.5292

14.371 Prob > F
<.0001*

Error

Good Fit e € (C Total ) 11
%

Correlation ThlS "Analysis of Variance" table has the same format
across almost all textbooks, journals, software, etc. In our
Residuals notation,
« SSR = 1152.1888
Assessment . SSE = 129.3404
R? o« SSTO = 1281.5292

We can use these for lots of purposes. In this class, we
Fitting Curves have seen that we can get R?:

SSE 129.3404
MLR 2 _ 1 _ _ g )
R =1 SSTO 1- 1281.5292 0 8990734

/\/_\/v—
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Describing
Relationships Example: Hardness of Alloy

Idea The parameter estimates give us the fitted values used in
our model:
Fitting Lines
—> Parameter

Estimate Std Error t Ratio Prob>|t|
161.33646 11.43285 14.11 <.0001"

Term

Best Estimate\D — Intercept
R —

Vo = percent_copper | 32.96875 [16.75371  1.97 0.0806
Good Fit - temperature -0.0855 D.009788 -8.74 <.0001*
iD=
Correlation Since we defined percent copper as x; earlier and
temperature as xs then we can write:

Residuals __— § = 161.33646 + 32.96875 - @1 — 0.0855 - z
Assessment We can use this to get fitted values. If we use temperature

) of 1000 degrees and percent copper of 0.10 then we would
R predict a hardness of

Fitting Curves § = 161.33646 + 32.96875 - (0.10) — 0.0855 - (1000)
MLR — 161.33646 + 3.296875 — 85.5

— 79.13333 73 /88



Describing
Relationships Example: Hardness of Alloy

Idea While our model looks pretty good, we still need to check a
few things involving residuals. We can save our residuals
Fitting Lines from the model fit drop down and analyze them.
i From Analyze > Distribution:
Best Estimate /\/yv_/—g
G 0 Od Fit 'I’he.distribution of values in each o
column
. “4 Columns ¥.coumns || 4Residual hardness x
Correlatlon A percent_copper opjieal~——~_- Cancel
: Lemdperature —
ardness
X _4 Residual hardness woit [0 tional numeric | R:em”
RESIdualS /@ramwnw frea ‘optional numeric ‘
¥ __I|optional
R? S 5

Fitting Curves

MLR
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Relationships

Idea

Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals
Assessment
R?

Fitting Curves

MLR

Example: Hardness of Alloy

There aren't many residuals here (just 12) but we would
like to make sure that the histogram has rough bell-shape
(normal residuals are good). I would call this one
inconclusive.

@® @® untitled - Distribution of Residual hardness

Bl s+ 9 e o [T
v ~Distributions
v~ Residual hardness

L ——=F—

N

5 A B O 2 4 &

> Quantiles
=“Summary Statistics

Mean 1.421e-14
Std Dev 3.4290261
Std Err Mean 0.9898746

Upper 95% Mean 2.1786992
Lower 95% Mean -2.178699
N 12

75/ 88



Describing
Relationships

Idea

Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals

Assessment

R2

Fitting Curves

MLR

Example: Hardness of Alloy

Another way to check if the residuals are approximately
normal is to compare the quantiles of our residuals to the
theoretical quantiles of the true normal distribution.

From the dropdown menu, choose Normal Quantile Plot to
get:

2@+ @lilelrn % =
-~ ~Distributions /
- ~Residual hardness L
. 1.28 B
// 09 2
- A 067.08 2
. 0.7 c
e // ; 0.0 82 o
" o5 &
./// E 04
- = 0.67.0.3 E
- 02 &
P : z
// v 1.28.0.1
— —_—

-6 -4 2 0 2 4 6

> Quantiles
»=Summary Statistics
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Idea

Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals
Assessment
R?

Fitting Curves

MLR

Example: Hardness of Alloy

AR e Y e * 2
- ~Distributions
~ ©Residual hardness

\
o
(o))

Normal Quantile Plot

3 -4 -2 0 2 4 6
> Quantiles
~~Summary Statistics

 If the points all fall on the line, then the residuals have
the same spread as the normal distribution (i.e., the
residuals follow a bell-shape, which is what we want).

« If they stay within the curves, then we can say the
residuals follow a rough bell shape (which is good).

 If points fall outside the curves, our model has
problems (which is bad).
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