One More Example  Fitting Surface and Curves



Describing
Relationships Example: Hardness of Alloy

Idea A group of researchers are studying influences on the
hardness of a metal alloy. The researchers varied the
Fitting Lines percent copper and tempering temperature, measuring

the hardness on the Rockwell scale.

Best Estimate The goal is to describe a relationship between our

response, Hardness, and our two experimental variables,

Good Fit the percent copper (z1) and tempering temperature (z5).

Correlation
Residuals
Assessment
R?

Fitting Curves

MLR
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Example: Hardness of Alloy

Percent Copper Temperature Hardness
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58.9
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Example: Hardness of Alloy

Theoretical Relationship:

We start by writing down a theoretical relationship. With
one experimental variable, we may start with a line.
Extending that idea for two variables, we start with a
plane:

y = Bo + B1x1 + Baxo
Observed Relationship:

In our data, the true relationship will be shrouded in
error.

y = Bo + Bix1 + Baxa2 + errors

—

signal | 4 [noise]
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Describing
Relationships Example: Hardness of Alloy

Idea Fitted Relationship:

If we are right about our theoretical relationship, though,
and the signal-to-noise ratio is small, we might be able to
estimate the relationship:

Fitting Lines

Best Estimate
y = by + bix1 + baxs

Good Fit. L/ / \

Correlation \ 2

ot

? teed.
Residuals m{’iec/ )

Assessment
R2
Fitting Curves

MLR
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Describing
Relationships Example: Hardness of Alloy

Idea Enter the data in JMP
Fitting Lines oo - L
~untitled "l K RN Y
. & percent_copper temperature hardness
Best Estimate 1 0.02 1000 78.9
-Columrs @0) | o0 1m0l o
. 4 perce...copper . .
Good Fit ,Emmmmg’ 4 0.02 1300 56.4
4hardness 5 0.1 1000 80.9
. 6 0.1 1100 69.7
Correlation ~Rows 7 0.1 1200  57.4
All rows 12 8 0.1 1300 55.4
. Selected 0 9 0.18 1000 85.3
ReSIdualS Excluded 0 10 0.18 1100 71.8
Hidden 0 11 0.18 1200 60.7
R2

Fitting Curves

MLR
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Describing
Relationships Example: Hardness of Alloy

Idea In JMP, go to

Fitting Lines Analyze >G"’C Modea

to define the model you are fitting:

Best Estimate

[ ] [ ] Fit Mog A&Q
1 =M | ificati n
Good Fit Model Specifcatin__ (0S¢ |
Personality:  standard Least Sauares
~8 Columns v Jihardness Emphasis:  vinimal Report
. A percent_copper optional Help 4_§
Correlatlon —/7 A temperature Recall | feep caiog open
A hardness weis | [ optional numeric Remove

ReSidualS Yaliaton \optiona/

= _I|optional

|
rea_|| optional numeric |
|
|

Assessment P
percent_copper
Cross temperature %
R* =
Degree
Attributes =
1 1 Transform =
Flttlng Curves No Intercept
MLR
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Describing
Relationships Example: Hardness of Alloy

Idea After clicking Run we get the following model fit results:
Fittin Lines [ NON J untitled - Fit Least Squares
8 W e+ 9 Le P %
. ~~Response hardness
Best Estimate P
> Effect Summary
_?(' Summary of Fit J 2’1
Good Fit RSquare 0.899073 |
RSquare Adj 0.876645
Root Mean Square Error 3.790931
3 Mean of Response 66.30833
Correlation Observations (or Sum Wgts) 12
- Analysis of Variance
Residuals Sum of
Source DF Squares Mean Square F Ratio
Model 2 1152.1888 576.094 40.0868
Assessment Error 9 120.3404 14.371 Prob > F
C 92 <.0001*
9 —“> " Parameter Estimates
R Term imate Std Error t Ratio Prob>|t|
\'-’s &— Intercept 161.33646§11.43285 14.11 <.0001*

L /percent_copper 32.96875 16.75371 1.97 0.0806

Fitting Curves ‘Yo, (iemperature -0.0855 ).009788  -8.74 <.0001*
> Effect Tests
=

MLR \9 » Effect Details
9
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Fitting Curves

MLR

Example: Hardness of Alloy

From this output, we can get the value of R2, the
coeffecient of determination:

* Summary of Fit
LRSquare O@\ﬂ{

RSquare Adj 0.876645
Root Mean Square Error 3.790931
Mean of Response 66.30833
Observations (or Sum Wgts) 12

Since R? = 0.899073, we can say

—

89.9074% of the variability in the hardness we
—-—-> observed can be explained by its relationship

with temperature and percent copper.
— e — —~ ~————
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Describing
Relationships Example: Hardness of Alloy

Idea From this output, we can get the sum of squares.

~ Analysis of Variancé

Fitting Lines :
Sum of
. SsQ Source DF Squares Mean Square F Ratio ‘>k
Best Estimate” " <_ Model 1152.1888 576.094 40.0868

129.3404
1281.5292

14.371 Prob > F
<.0001*

Error

Good Fit e € (C Total ) 11
%

Correlation ThlS "Analysis of Variance" table has the same format
across almost all textbooks, journals, software, etc. In our
Residuals notation,
« SSR = 1152.1888
Assessment . SSE = 129.3404
R? o« SSTO = 1281.5292

We can use these for lots of purposes. In this class, we
Fitting Curves have seen that we can get R?:

SSE 129.3404 \/
MLR 2 _ 1 — 1 _
R =1 SSTO 1 1281.5292 ;@8990734 ;

/\/_\/v—
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Describing
Relationships Example: Hardness of Alloy

Idea The parameter estimates give us the fitted values used in
our model:
Fitting Lines
—> Parameter

Estimate Std Error t Ratio Prob>|t|
161.33646 11.43285 14.11 <.0001"

Term

Best Estimate\D — Intercept
R —

Vo = percent_copper | 32.96875 [16.75371  1.97 0.0806
Good Fit - temperature -0.0855 D.009788 -8.74 <.0001*
iD=
Correlation Since we defined percent copper as x; earlier and
temperature as xs then we can write:

Residuals __— § = 161.33646 + 32.96875 - @1 — 0.0855 - z
Assessment We can use this to get fitted values. If we use temperature

) of 1000 degrees and percent copper of 0.10 then we would
R predict a hardness of

Fitting Curves § = 161.33646 + 32.96875 - (0.10) — 0.0855 - (1000)
MLR — 161.33646 + 3.296875 — 85.5

— 79.13333 73 /88



Describing
Relationships Example: Hardness of Alloy

Idea While our model looks pretty good, we still need to check a
few things involving residuals. We can save our residuals
Fitting Lines from the model fit drop down and analyze them.

Best Estimate From Analyze > Distribution:

[ XK ] Distribution
° The distribution of values in each
GOOd Flt column
. “4 Columns v.comns || 4 Residual hardness o
Correlatlon A percent_copper opjienal—~——~_- Cancel
A temperature a—
A hardness —
. 4 Residual hardness weis_|[ optional numeric | i
RESIdualS Agm only Frea ‘optional numeric ‘
¥ __I|optional
Assessment ) —Jﬁyﬁ—
a .
R? S5

Fitting Curves

MLR
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MLR

Example: Hardness of Alloy

There aren't many residuals here (just 12) but we would
like to make sure that the histogram has rough bell-shape
(normal residuals are good). I would call this one
inconclusive.

@® @® untitled - Distribution of Residual hardness

Bl s+ 9 e o [T
v ~Distributions
v~ Residual hardness

L ——=F—

N

5 A B O 2 4 &

> Quantiles
=“Summary Statistics

Mean 1.421e-14
Std Dev 3.4290261
Std Err Mean 0.9898746

Upper 95% Mean 2.1786992
Lower 95% Mean -2.178699
N 12
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R2

Fitting Curves
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Example: Hardness of Alloy

Another way to check if the residuals are approximately
normal is to compare the quantiles of our residuals to the
theoretical quantiles of the true normal distribution.

From the dropdown menu, choose Normal Quantile Plot to
get:

2@+ @lilelrn % =
-~ ~Distributions /
- ~Residual hardness L
. 1.28 B
// 09 2
- A 067.08 2
. 0.7 c
e // ; 0.0 82 o
" o5 &
./// E 04
- = 0.67.0.3 E
- 02 &
P : z
// v 1.28.0.1
— —_—

-6 -4 2 0 2 4 6

> Quantiles
»=Summary Statistics
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Example: Hardness of Alloy

AR e Y e * 2
- ~Distributions
~ ©Residual hardness

\
o
(o))

Normal Quantile Plot

3 -4 -2 0 2 4 6
> Quantiles
~~Summary Statistics

 If the points all fall on the line, then the residuals have
the same spread as the normal distribution (i.e., the
residuals follow a bell-shape, which is what we want).

« If they stay within the curves, then we can say the
residuals follow a rough bell shape (which is good).

 If points fall outside the curves, our model has
problems (which is bad).
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Fitting Lines
Transformations: Fitting complicated relationships

Best Estimate
Consider the simulated dataset 'transform.csv' in the

Good Fit lecture module. Here's the scatterplot:
Correlation [ NON ) transform 2 - Fit Y by X of y by x
W =+ 9 (BT
Residuals * - Bivariate Fit of y By x
9
Assessment 8-
R? i '
6 '
Fitting Curves ¥y 5
4_
MLR 3.
. 2+
Transformation R
o 2 4 6 8 10
X
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Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals
Assessment
R2

Fitting Curves
MLR

Transformation

Transformations: Fitting complicated relationships

Consider the residual plot you would get by trying to fit a
line. What would that look like?

Now consider the residual plot you would get by trying to
fit a quadratic. What would that look like?

What can we do about the size of the residuals??

We need a function that can both adjust the scale our
responses and account for the curve!!
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Fitting Curves
MLR

Transformation

Transformations: Fitting complicated relationships

One possible function that could do that: In(x).

[ ] [ ] transform 2 - Fit Y by X of y by Log[x]
Wl ¢+ 9:e (Bl

- ~Bivariate Fit of y By Log[x]
9 o
8

.
00,0
.a’...
.
o ‘s .

.
e

=N Whrhoo N

-15 -050 05 1 15 225
Log[x]

Transforming our variables can allow us to get better fits,
but you need to be careful about the meaning of the
relationship. For instance, the slope now means "the
change in the response when the natural log of x is
increased by 1 - the relationship to x itself is not always
easy to translate back.
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Fitting Lines
Dangers in Fitting Relationships

Best Estimate
Example: Stress and Lifetime of Bars

Good Fit Consider the bars example again
Correlation
SIresS 2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0
Residuals (kg /mm”)
Assessment hfetime o -0 55 51 62 37 38 45 46 19
(hours)
R2

Here's the linear fit:
Fitting Curves

60
MLR o 20
uq% 40
Transformation = a5
. 20
Dangers iIn |
Fits 0 5 10 1520 25 30 35 40
stress
Overfitting
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Fitting Lines
Dangers in Fitting Relationships

Best Estimate
Example: Stress and Lifetime of Bars

Good Fit
60

Correlation 50

()

=
Residuals :a_j 40

30
Assessment 20
R2 0 5 10152025 30 35 40

stress

Fitting Curves The fitted line doesn't touch all the points, but we can push

our relationship further by adding (stress)?, (stress)?,

MLR A
(stress)®, and so on.
Transformation : : :
Everytime we add a new term to the polynomial, we give
i the fitted relationship the ability to make one more turn.
Dangers in
Fits This leads to a problem called overfitting: our model is
o just following the data, including the errors, instead of
Overfitting uncovering the true relationship.
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Multicollinearity

Multicollinearity

Multicollinearity occurs when you have strongly

correlated experimental variables.

[ BOX ] multicollinearity 2 - Scatterplot Matrix
[ BRI APE

- ~Scatterplot Matrix

x3

=N

© STCUSHS © STSICG
s

x4

= —NNW D

05 15 25 35 0 20 40 60 8005 15 25 35
x1 x2 x3
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Fitting Lines
Multicollinearity

Best Estimate
Multicollinearity can lead to several problems:

Good Fit : :
» Since the variables are all related to each other, the
i impact each variable has in the relationship to the
Correlation . :
response becomes difficult to determine
.  Since the disentangling the relationships is difficult,
Residuals the estimates of the slopes for each variable become
very sensitive (different samples lead to very different
Assessment estimates)
» Since the correlated experimental variables will have
R? similar relationships to the response, most of them are

not needed. Including them leads to an overfit.

Fitting Curves . o _
Ultimately while it may look like a good fit on paper, the

MLR model will be inaccurate.

Transformation
Overfitting

Multicollinearity 86 / 88
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Fitting Curves
MLR
Transformation
Overfitting
Multicollinearity

Wrapup

Finding the Best Fit

« Again, we can use the Least Squares principle to find
the best estimates, by, b1, and bs.

e The calculations are fairly advanced now that we have
three values to estimate,

» so these calculations are usually done in statistical
software (like JMP).
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MLR
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Wrapup

Judging The Fit

e Not all Theoretical Relationships we may imagine are
real!

e Perhaps a better relationship could be found using
Yy = Bo + B1z1 + B2 In(z)

» We determine which relationships to try by examining
plots of the data, fit statistics (like R?), and plots of
residuals.

« Be careful of overfitting and multicollinearity (when
the experimental variables are correlated).
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