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Chapter 4, Section 1

Linear Relationships Between Variables
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Relationships
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Describing Relationships between variables

This chapter provides methods that address a more
involved problem of describing relationships between
variables and require more computation. We start with

relationships between two variables and move on to more.

Fitting a line by least squares

Goal:Notice a relationship between two quantitative
variables.

We would like to use an equation to describe
how a dependent (response) variable, y,
changes in response to a change in one or more
independent (experimental) variable(s), x.
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Ide3 Line review

Recall a linear equation of the form

y=Ee -+ ~ o-e

Where m is the slope and b is the intercept of the line.

we assume [y and ; are unknown parameters and € is

N
@ — b ) eshmate) .. .
< ° > In statistics, we use the notation y = By + i1« + € where
/\

(> - 19\ SOMme error.

The goal is to find estimates by (intercept) and b, (slope)
B.,B R Uwlene for the parameters.

(Fixed) PrlametT &S

4 /88



Describing

Relationships Describing Relationships

We have a standard idea of how our experiment works:

ldea

* Bivariate data oftern arise because a quantitative
(experimental\variable x has been varied between several
different setting (treatment).
A

s Itis helpful to have an equation relating[y [the response)
to x when the purposes are summarization, interpolation,
limited extrapolation, and/or process optimization/
adjusment.

and we know that with an valid experiment, we can say
that the changes in our experimental variables actually
cause changes in our response.

But how do we describe those response when we know
that random error would make each result different...
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The Underlying |dea

We start with a valid mathematical model, for instance a
line: \)«Q
In this case,

e [y is the intercept - when x = 0, y = fy.

(3 is the slope - when « increase by one unit, y
increases by 31 units.

7/ 88
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|dea An experiment examining the effects of stress on time
until fracture is performed by taking a sample of 10
stainless steel rods immersed in 40% CaCl solution at 100

Ex: Bar Stress  degrees Celsius and applying different amounts of
uniaxial stress.

The results are recorded below:

stress

2y 2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0
(kg/mm”)
Iifetme .o oo o5 o1 g2 37 38 45 46 19
(hours)

A good first place to investigate the relationship between
our experimental variables (in this case, stress) and the
response (in this case, lifetime) is to use a scatterplot and
look to see if there might be any basic mathematical
function that could describe the relationship between the

1ables.
varia 3 /88
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Ex: Bar Stress

Example: Stress on Bars (continued)

Our data:
stress

2. 2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0
(kg/mm")
lifetme .o oo 55 g1 g2 37 38 45 46 19
(hours)

 Plotting stress along the z-axis and plotting lifetime
along the y-axis we get

60 =

lifetimea
[X} ry L)
= = [=3

L]
=

I 1 I 1
10 20 a0 40
stress
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Ex: Bar Stress

Example: Stress on Bars (continued)

Our data:
stress

2. 2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0
(kg/mm")
lifetme .o oo 55 g1 g2 37 38 45 46 19
(hours)

« Examining the plot, we might determine that there
could be a linear relationship between the two. The
red line looks like it fits the data pretty well.

N\

lifetime
(%] ry 5]
[=3 = (=3

P
=

L) I
20 30

stress 10 / 88



Describing Example: Stress on Bars (continued)
Relationships oy data:

Idea stress
(ke /mm2) 2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0
Ex: Bar Stress glfglt;lse JU) I N P P B R R O

« But there are several other lines that fit the data pretty
well, too.

lifetime
F- [ @
= (=1 =]

%}
=

20-

T 1 I T
10 20 a0 40
siress

« How do we decide which is best? 11/88
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e Where the line comes from
Relationships
When we are trying to find a line that fits our data what
ldea we are really doing is saying that there is a true physical
relationship between our experimental variable x is
related to our response y that has the following form:

Ex: Bars

Theoretical Relationship

~
Fitting Lines {*—"V“" “ (y=Bo+pi-a ]

However, the response we observe is also effected by
random noise: TN

thserved Relationshiﬂ
y = Po+ f1 -« +errors(

= signal + noise

If we did a good job, hopefully we will have small enough
errors so that we can say

y~pBo+pP1-x 12/ 88
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So, if things have gone well, we are attempting to estimate
ldea the value of 8y and 3; from our observed relationship

y~Po+pr-x

Using the following notation:

Ex: Bars

F|t|:|ng Lines e by is the estimated value of B, and
e b, is the estimated value of 3
o ¢ is the estimated response

)/{ We can write a fitted relationship:
P e ~——r"

g:b0+b1°$

The key here is that we are going from the underlying
true, theoretical relationship to an estimated relationship.

In other words, we will never get the true values 3y and
(1 but we can estimate them.

However, this doesn't tell us how to estimate them. 13 /88
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Fitting Lines

Best Estimate

The principle of Least Squares

A good estimte should be based on the data.

Suppose that we have observed responses y1, Y2, - .., Yn
for experimental variables set at 1, €9, ..., T,.

Then the Principle of Least Squares says that the best
estimate of 8, and S3; are values that minimize

Cored
e(ved < 7
\Ve . eV
2 \’w\v&_ f@g— yi)2

=1

In our case, since ¢, = by + by - x; we need to choose
values for by and b; that minimize

n n

> (wi—9)2=> (v — (bo+ b1 i)

=1 =1

In other words, we need to minimize something with
respect to two values we get to choose - we can do this by
taking derivatives. 14/ 88



Deriving the Least Squares Estimates(Optional reading)

We can rewrite the target we want to minimize so that the variables are less
tangled together:

n n

Z - :Z b0+blxz)
=1

i=1

n

Z y — 2y (bo + biz;) + (bo + 51%')2)

i=1

n n

= y? — 2y;(bo + biz;) + Z(bo + byx;)?
i=1 i=1 i—1

n n

y2 — Z(2y,-bg + 2y;bix;) + Z (B2 + 2bobrz; + (b1:)*)
i1 i—1 i=1

y v - Xn: 2y;bo — Z 2yibiz; + Z b2 + Z 2bob1z; + Z b
i=1

i=1

n

= ny — 2b02n:yi — 2612n:yiwi +nb(2) +2bob12n::v,’ —f—b%zn:m?
i=1 i=1 i=1 i1 i1

15/ 88



Describing

Relationships Deriving the Least Squares Estimates (continued)

| d How do we minimize it?
ed

e Since we have two "variables" we need to take
derivates with respect to both.

Ex: Bars

« Remember we have our data so we know every value
of ; and y; and can treat those parts as constants.

Fitting Lines

< The derivative with respect to by:
Best Estimate 3 k2o 2 Y
i=1 i=1

Y The derivative with respect to by:

—2 i Yix; + 2bg 5: i + 20 K:: z;
i=1 i=1 =1

16 /88
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Relationships Deriving the Least Squares Estimates (continued)

We set both equal to 0 and solve them at the same time:

ldea n n
Ex: Bars __2;g;yi*'2nbo4‘251;g;aa::0
Fitting Lines _ziyixi - 250§n:$i +2b1§n::c§ 0
Best Estimate = =1 =1

We can rewrite the first equation as:
1 « 1 <«
bo = - E;yz - bl; 2;567,
1= 1=

=g — b

and then replace all by in the second equation (there is
some algebra type stuff along the way, of course) 17/ 88
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Relationships Deriving the Least Squares Estimates (continued)

After a little simplification we arrive at our estimates:

ldea
Least Squares Estimates for Linear Fit
Ex: Bars bp =7 — biT
Fitting Lines b _ 2o Yii Ty
1 — n —
iy @ — na?
Best Estimate

_ Yoo (i —x)(yi — )
> iz — Z)?

18 /88
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Ex: Bars
Fitting Lines

Best Estimate

Wrap Up

e Don't try to memorize the derivation. I will
never ask you to do that on an exam.

e Try to understand the simplification steps -
the ones that moved constants out of
summations for example.

e This is one rule - there are others, but
Least Squares Estimates have some useful
properties that will make them the obvious
best choice as we continue the course.

19/ 88
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stress
2. 2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0
|dea (kg/mm")
Hlfg;;‘;e 63 58 55 61 62 37 38 45 46 19
Ex: Bars

Estimating the best slope and intercept using least

Fitting Lines ~ S4854™*%
bp =9 — T

Best Estimate

S YT — NIy

S x? — nE?
1=1 "1

by =

I 9w D)
Z?:l (wz — 3_3)2

In our case we have the following:

20/ 88



Describing
Relationships

Idea
Ex: Bars
Fitting Lines

Best Estimate

Example: Stress on Bars

stress

2. 2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0
(kg/mm”)
lifetime o ¢ o5 61 g2 37 38 45 46 19
(hours)

10 10 10 10
Dy =484, 2 =200, iy = 84075,z = 54125,
i=1 i=1 j= =1

Using this we can estimate by:

Q: Ez 1yzazz—na:y
lxz — nz? * —

Z

i‘.B‘ / 'é —> -3
™ 8407.5 — 10 (200) (%)
2 54125—10<2°°>2 2
zr \_JD\;O
_1272.5
T 14125

i ~ —0.9009 s / 21/ 88
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Fitting Lines

Best Estimate

v (elan oAS\,\"{‘ 9

#\\&'—lga"‘@\x*_g

$

Example: Stress on Bars

stress

2. 2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0
(kg/mm”)
lifetime o ¢ o5 61 g2 37 38 45 46 19
(hours)

10 10 10 10
Dy =484,) z; =200, w;y; = 84075,  a? = 5412.5,

=1 =1 =1 =1
And using b; we can estimate by:
_.7 by = Yy — biz

-(w) Q%)

c— -

—1272.5
= 48.4 — ( ) 20.0

1412.5

Which gives us the Fitted Relationship: 22 /88
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DESCI’ibing Example: Stress on Bars
Relationships

stress
2. 2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0
|dea (kg/mm”)
%fggs‘;e 63 58 55 61 62 37 38 45 46 19
Ex: Bars
y = 66.4177 — 0.9009x
Fitting Lines

Best Estimate N

lifetime

lli llﬁ . Eli 4I3 ili 23 / 88



DESCI’ibing Example: Stress on Bars
Relationships

stress

2. 2.5 5.0 10.0 15.0 17.5 20.0 25.0 30.0 35.0 40.0
|dea (kg/mm”)

%fg;;‘s‘;e 63 58 55 61 62 37 38 45 46 19
Ex: Bars

Fitted line
Fitting Lines
Best Estimate

lifetime

1l3 EIZ EIZ 4I3 ilﬁ
strass 2 4 / 8 8
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Ex: Bars

Fitting Lines 7 AN e

When making predictions, don't extrapolate.

Extrapolation is when a value of x beyond the
range of our actual observations is used to find
a predicted value for y. We don't know the

behavior of the line beyond our collected data.

Interpolation is when a value of x within the
range of our observations is used to find a

predicted value for y.

B A

Best Estimate o
Fred {elaien slips ' .
& ©
\(‘3 z bo + b‘X )(.\01\_’
Predict new CesparSe Lete”
Vahvass LL L
{ N9 63 ¢

% = b, ("\9\(2°>

>

k—ﬁ St e Polaton y

5
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Relationships Knowing when a relationship fits the data well

So far we have been fitting lines to describe our data. A
ldea first question to ask may be something like:

« Q: What kind of situations can a linear fit be used to
Ex: Bars describe the relationship between an expreimental
variable and a response?

Flttlng Lines e A: Any time both the experimental variable and the
response variable are numeric.

Best Fstimate  However all fits are not created the same:

Good linear fit OK linear fit Poar linear fit

Good Fit

104

o T 1 1 I L 1 1 1 I | 1 I T 1 L] 1 I T 1 I
-4 -2 1 0 1 2 33 -2 1 0 1 2 i-3 -2 -1 0 1 2 3
X

27 | 88
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Ex: Bars
Fitting Lines
Best Estimate
Good Fit

Correlation

Correlation

Visually we can assess if a fitted line does a good job of
fitting the data using a scatterplot. However, it is also
helpful to have methods of quantifying the quality of that
fit.

Correlation gives the strength and direction of
the linear relationship between two variables.

For a sample consisting of data pairs (z1, 1), (2, Y2),
(z3,Y3), ... (Tpn, yn), the sample linear correlation, r, is
defined by

> (@i —Z)(yi — )
& V(S @ - 2?) (S8 - 9)°)

which can also be written as

29/ 88
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Ex: Bars
Fitting Lines
Best Estimate
Good Fit

Correlation

Correlation

1. Sample correlation (aka, sample linear correlation)
The value of r is always between -1 and +1. (oc \€ | \)
—~—————"

» The closer the value is to -1 or +1 the stronger the
linear relationship.

« Negative values of r indicate a negative relationship
(as x increases, y decreases).

 Positive values of r indicate a positive relationship (as
& Increases, y increases).

3 \(" 4N (e L

- h .

>

Y

30/ 88
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Fitting Lines
Best Estimate
Good Fit

Correlation

e One possible rule of thumb:

Range of r
0.9t0 1.0
0.7t00.9
0.5t0 0.7
0.3t0 0.5
-0.3t0 0.3
-0.5t0-0.3
-0.7to0 -0.5
-0.9 to -0.7
-1.0t0 -0.9

Strength
Very Strong
Strong
Moderate
Weak
Very Weak/No Relationship
Weak
Moderate
Strong
Very Strong

Direction
Positive
Positive
Positive

Positive

Negative
Negative
Negative

Negative

31/88
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Ex: Bars
Fitting Lines
Best Estimate
Good Fit

Correlation

Good linear fit OK linear fit Poar linear fit
15—

104

=10

o T 1 1
-4 -2 1 0

The values of r from left to right are in the plot above are:

r=0.9998782 r=-0.8523543 r=-0.1347395

PN

 In there first case the linear relationship is almost
perfect, and we would happily refer to this as a very
strong, positive relationship between x and y.

e In there second case the linear relationship is seems
appropriate - we could safely call it a strong, negative
linear relationship between x and y.

e In there third case the value of  indicates that there is
no linear relationship between the value of  and
the value of v. 32 /88



DESCI'ibin g 1. Sample correlation (aka, sample linear correlation)
RElatIOﬂShlpS Example: Stress and Lifetime of Bars

We can use it to calculate the following values:

dea
i z; = 200, i x? = 5412.5,
Ex: Bars = 2

10 10 10
D Ty =484, y? = 25238,  ay; = 8407.5,
i=1 i=1 i=1

Flttlﬂg |_iI'IES and we can write:

n

Y oie1 TiYi — NTY
’]" _—

Best Estimate S 7 - ) (o i - )

=13

Good Fit 8407.5 — 10(20)(48.5)

/(54125 — 10(20)?) (25238 — 10(48.4)?)

Correlation o

So we would say that stress applied and lifetime of the bar have a strong,
negative, linear relationship.

33 /88
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Ex: Bars
Fitting Lines
Best Estimate
Good Fit
Correlation

Residuals

Residuals

e The "residue" left over from fitting a line

¥

Best -Fit Curve
———————

£.4e
Q= both X

| fegkond™

. :
Intercept
H X

« Each point represents some (x;, y;) pair from our
data

« We use the Least Squares approach to find the best fit
line,y = by + 612 [ gMed (Cramiaaship) o7

N~
« For any value z; in our data set, we can get a fitted (or
predicted) value y, = by + b (B ted Vo lne)

35/ 88
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Ex: Bars
Fitting Lines
Best Estimate
Good Fit
Correlation

Residuals

Residuals

Best -Fit Curve

" .o
Intercept
i x

& /-)\61.,

e The residual is the difference between the observed
data point and the fitted prediction:

A
¥> 6 .
—> e =i — ‘
o In the linear case, using y = by + b;x, we can also

write
e =Y —U; = i — (bo + biz;)

for each pair (x;, y;).

36 /88
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Ex: Bars N
e -

\6 '_a Lo < 5

> Yo Yo i

Interc:eptlf
H X

Best Estimate
ROPe: I}E.iduals = Observed - Predicted (using symbol @

Fitting Lines

Good Fit . . |
e Ife; > Otheny; —y, > 0and y; > y, meaning the
) observed is larger than the predicted - we are
Correlation "underpredicting”
' « Ife; < Otheny; — y; < 0and y; < y; meaning the
Residuals observed is smaller than the predicted - we are

"overpredicting"
Q\OV;O\AS\J) U.)Q.'c; \"¥Q QU ( I\Q&\ é\} 0/(’S Yo b C S me “37 /88
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Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals

Assessment

Assessing models

When modeling, it's important to assess the (1) validity
and (2) usefulness of your model.

To assess the validity of the model, we will look to the
residuals. If the fitted equation is the good one, the
residuals will be:

o Centered at zero v
» Bell shaped distribution

A~

i- Ptternless (cloud like, random scatter) ’\/

To check if these three things hold, we will use two
plotting methods.

« Aresidual plot¥is a plot of the residuals,
s.@or y in the case of multiple

egression, Section 4.2).

39 /88
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Residual plot
ldea
Fitting Lines
Best Estimate
Good Fit
. @ oot e
Correlation
Residuals Y
¥ Pafie(nless \ 6 oo ((
Assessment resydves

¥ Contered =X ey F'} 40 / 88
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Residual plot
ldea
Fitting Lines
Best Estimate R T —
Good Fit of S
Correlation
Residuals - Lo
nNot o X \Dﬂ’dec./\ N s At FLe

= , o 2e (9
Assessment go%i x Not  cantered ot 2ef0
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Fitting Lines
Best Estimate
Good Fit
Correlation
Residuals

Assessment

Assessing models

Residual plot

42 | 88



