Common
Distributions

Background
Bernoulli

Binomial

Examples of Binomial Distribution

e Number of hexamine pallets in a batch of

total pallets made from a palletizing
m

achine that conform to some standard.

e Number of runs of the same chemical
process with percent yield above 80 given

that you run the process 1000 times.
Pt

e Number of winning lottery tickets when
you buy 10 tickets of the same kind.
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Plots of Binomial distribution based on different success
Bachground probabilities and sample sizes.
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Common

Distributions The Binomial Distribution

Example [10 component machine]

Background

Suppose you have a machine with 10 independent

B EI'I'IOU”i components‘n series: The machine only works if all the
components work. Each component succeeds with
probabilityp = 0.95 and fails with probability1 — p = 0.05.

BII'IOITIIBI Let Y be the number of components that succeed in a
given run of the machine. Then

U\\\a &1eC \(—7—\9_,41 —_ > Y~ ~ Binomial(n = 10,p = 0.95)

dist0\b aron Question: what is the probability of the machine working
properly?

Le mes Com [’0024\* <System:
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f- 5%
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B(i)sr?rrinbour]cions The Binomial Distribution

Example [10 component machine]
Background
Y ~ Binomial(n = 10,p = 0.95)
Bernoulli What if I arrange these 10 components in parallel? This
machine succeeds if at least 1 of the components succeeds.
Binomia| What is the probability that the new machine succeeds?
|
5
3 — T
2 /H} f
sL———
6
7.
3
7
)
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Binomial Distribution

Expected Value and Variance



rommon The Binomial Distribution

Distributions

Expected value:
Background

E(X)=n-p

Bernoulli

Variance:
Binomial B
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Common
Distributions

Background
Bernoulli

Binomial

‘6’\"&(\60\Ké
Qe\/'.a’\\or\

The Binomial Distribution

Example [10 component machine]

Calculate the expected number of components to succeed
and the variance.

7 ~_ @;“OY““Q./Q Q{\_: \0) er %,Sf)

E(vy)= {\,{) = \°C°'95) *—%5

(UJ‘Q expeCt 0.5 Gaw\fonen'\S To S“‘\C(EE’_C‘
udoﬁ\z-.ﬁﬁ JA N ﬂ\“(\r\'d\Q)

Vos(y) = nPlw- p) = e (0.95>(\» 0.95) = 0.495

DY) = v © Sod5 = 0,689
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Common
Distributions

Background
Bernoulli

Binomial

The Binomial Distribution

A few useful notes:

» In order to say that " X has a binomial distribution

with » trials and success probability p" we write
X ~ Binomial(n,p)

If X3, X,,...,X, are n independent Bernoulli random
variables with the samepthen X = X; + X5 +... + X,
1s a binomial random variable with r» trials and
success probability p.

Again, n and p are referred to as "parameters" for the
Binomial distribution. Both are considered fixed.

Don't focus on the actual way we got the expected
value - focus on the trick of trying to get part of your
complicated summation to "go away" by turning it into
the sum of a probability function.

po’&{g There s N0 Clese \?Q(“N\ S‘Da(‘

COF og @‘)1\00’\3&/@.
52 /75



The Geometric Distribution



Rpowe( %—QJ\CV'\Q_ discrefe CN.

(ommon The Geometric Distribution

Distributions

Origin: A series of independent random experiments, or
Bachground trials, are performed. Each trial results in one of two
possible outcomes: successful or failure: The probability of
. a successful outcome, p,is the same across all trials. The
BEI'I'IOU”I trials are performed until a successful outcome is
observed.

Binomial Definition: X is the trial upon which the first successful
outcome'is observed. X can take values 1,2,.. ..

—

Geometric probability function:

’ oo\ el @ me teC.
Withm Theres 3 on e
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Common
Distributions

Background
Bernoulli
Binomial

Geometric

Examples of Geometric Distribution

e Number of rolls of a fair die until you land
asd

o Number of shipments of raw materials you
get until you get a defective one (success
does not need to have positive meaning)

o Number of car engine starts untill the
battery dies.
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Common
Distributions

Background
Bernoulli
Binomial

Geometric

Shape of Geometric Distribution

ACY, SO 0=

The probability of observing the first success
decreases as the number of trials
increases(even at a faster rate as p increases)

data
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ommor The Geometric Distribution  \.ce @ocp cOF

Distributions
Cumulative probability function: F(z) =1 — (1 — p)*
Background
Here's how we get that cumulative probability function:
Bernoulli The probability of a failed trial is 1 — p.
ot { The probability the first trial fails is also just 1 — p.

The probability that the first two trials both fail is
1-p)-1-p)=(1-p>

The probability that the first z trials all fail is (1 — p)®.
This gets us to this math:

Binomial (@gj

Geometric
F(z) = P(X < z)
=1—P(X > x)
cOF e
. _——
of (geom=ing
L buhan
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Common
Distributions

Background
Bernoulli
Binomial

Geometric

The Geometric Distribution

Expected value:

Variance:

:Xf\daé;COT"‘( P;)

E(X) = %
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Common

Y Example

Distributions P

NiCad batteries: An experimental program was

Bachground successful in reducing the percentage of manufactured
NiCad cells with internal shorts to around 1%. Let T be the
fest number at which the first short is discovered. Then,

Bernoull T - Geom(p). red
s Bay=P(T=1)= O(r Y, =02 -

. : Calculate
Binomial
o P(1st or 2nd cell tested has the 1st short)

: A\ o \_2 _pcveuy 0CT=2) = K« F
Geometric ~ PCT=Y e TE ) = peTEE R

' - (o.o\)(o.ss) -\- (e-21)(0.99) = 0.9199
$0) - Co01) (0.9

» P(at least 50 cells tested without finding a short)

O(T 95e) = \-0(TLEs) = \- F(5:)
Se
(Georatac digh has = -T- -0
clesed SR CDYJ = -1 (o o)’ l (o. 99) = 0,6‘60/75
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NiCad batteries:
Bachground 1Ca atieries

Calculate the expected test number at which the first short
, is discovered and the variance in test numbers at which
Bernoulli the first short is discovered.

-

Binomial T’ Geor~(P) => ECTY 5
V(< )= \- P
Geometric =y

S E(T): —— ="oeo

o .o\
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Common

T Exampl
Distributions dmpie
A shipment of 200 widgets arrives from a new widget
Bachground distributor. The distributor has claimed that the widgets
p= o.\ thereis only a 10% defective rate on the widgets.Let X be
—— the random variable asociated with the number of trials

BEI'I'IOU”I untill finding the first defective widgets. '
(5wcCeSS here 1S Fadiry defectve widget)
« What is the probability distribution associated with

Binomial this random variable X? Precisely specify the
parameter(s).
Geometric >§NCDC©»&P19-\>/ X=1,2,3 ..

« How many widgets would you to test before
finding the first defective widget?

E(XB; __\___ —_ —-—“\ : = \0
P .
(€ we need T sk onovg. o wd gels +4
sec TLQ— €§C st AQ@QC_F\V‘L -\ . 62 /75



Common
Distributions

Background
Bernoulli
Binomial

Geometric

Example

You find your first defective widget while testing the thrid
widget.

« What is the probability that a the first defective widget
would be found on the third test if there are only 10%
defective widgets from in the shipment?

= 0.1(0.9)? :(o@
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Common
Distributions

Background
Bernoulli
Binomial

Geometric

Example

« What is the probability that a the first defective widget
would be found by the third test if there are only 10%
defective widgets from in the shipment?

P <3)=Fx(3)=1-(1-p)°

:]__(1_.1)3

=1-(0.9)° =0.271

\ZCCO._\\"\, " Geome.'k ChC éls’\"(\bw'\ﬂol\f

CODF 3 FIX)= - (v P

\

-
P £ 9 4\D’CX)-‘— eC-P) L x=LL,3,e
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Common
Distributions

Background
Bernoulli
Binomial
Geometric

Poisson

The Poisson Distribution

Origin: A rare occurance is watched for over a specified
interval of time or space.

It's often important to keep track of the total number of
occurrences of some relatively rare phenomenon.

Definition
Consider a variable

X : the count of occurences of a phenomenon
across a specified interval of time or space

or

X: the number of times the rare occurance is

observed -
—~

T\A1S Coww)Y/[\\um'Dd ‘9’9’ '\'"\‘V\Q«S TL\Q (\C\[h

ACcnlaf(® 15 olserned G BT ASSOC

(o\"\QC{
to o el-waewn  PmE. 66 /75



Common , o |
The Poisson Distribution avstwet geas@

Distributions ol
MY
probability function:
Background
The Poisson ¢ AN) distribution is a discrete
B i probability distribution with pmf
ernoull
e r=0,1
Binomial )= { " h
0 0. W.

Geometric For A>0

Poisson X ~— PO1sSo (/}\ )

PQ.\$$§1\ AQS’T-
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Common
Distributions

Background
Bernoulli
Binomial
Geometric

Poisson

The Poisson Distribution

These occurrences must:
~——————

e be independent
e be sequential in time ( no two occurances at once)

e occur at the same constant rate \
/\/\’\_\’_—-

A the rate parameter, is the expected number of
occurances in the specified interval of time or space (i.e
EX) =)

68 /75



Common
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Background
Bernoulli
Binomial
Geometric

Poisson

The Poisson Distribution

Examples that could follow a Poissor ( A)
distribution :

Y is the number of shark attacks off the coast of
CA next year, A\ = 100 attacks per year

e ———

Z is the number of shark attacks off the coast of
CA next month, A = 100/12 attacks per month

—~—~

N is the number of a-particles emitted from a
small bar of polonium, registered by a counter

in a minute, A = 459.21 particles per minute
O~——

J is the number of particles per hour,
A = 459.21 « 60 = 27,552.6 particles per hour.

o~ TN —~
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Lommon The Poisson Distribution

Distributions
Background 2 5
Bernoulli
Binomial
Geometric O .1 "" .
Poisson @) Right skewed with peak near A
N 1ght skew
g o 0
o 9
COF ~ o
(0]
1 1 . \ ‘ 7X)
\ . 3 & > 70/ 75



Common

Distributions The Poisson Distribution
For X a Poisson ( random variable,

Background ™

N=EX:§:we_;)\w — A
Bernoulli e

02:VarX:Z(a:—)\)2ew' = A

¢ . =0 :

Binomial
Geometric
Poisson
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Common
Distributions

Background
Bernoulli
Binomial
Geometric

Poisson

Example

Arrivals at the library

Some students' data indicate that between 12:00 and

—_—~———
12:10pm on Monday through Wednesday, an average of
around 125 students entered Parks Library at ISU.
Consider modeling

M : the number of students entering the ISU
library between 12:00 and 12:01pm next
Tuesday T

Model M ~ Poisson(A). What would a reasonable choice of
A be?

/
\2S S‘\'V\éel\’\S i« o S 3\: \’L—_S_

/ lo

™ A
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Common

Distributions Example

Arrivals at the library

Background

Under this model, the probability that between 10 and 15
, students arrive at the library between 12:00 and 12:01 PM
Bernoulli is: .

Binomial M Ao Polssen (A= 115
,-)\g:\ S
i = ¢ _p,) -
Geometric Ty = — M 0,7,
Poisson 213)+ 8O E0D
p(hAMOS):?(xonﬁcm PEQ ) 13+
T s o V2.5 \ ~12.5 \g
e (S) e (1B , € (\2.5)
- - — % 4 -
\o ), \\\ \5 )
- O.E
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Background
Bernoulli
Binomial
Geometric

Poisson

Shark attacks

Let X be the number of unprovoked shark attacks that will
occur off the coast of Florida next year. Model

AN N—)

X ~ Poisson(A).

From the shark data at
http://www.flmnh.ufl.edu/fish/sharks/statistics/FLactivity.htm,
246 unprovoked shark attacks occurred from 2000 to 2009.

~— — - N—————
What would a reasonable choice of )\ be?

246 afTeCls i~ 1o Jeeds

\

N AR aCls 1 ne Xt Jeac
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\ o
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Common

Distributions  SNarR atAcks
Under this model, calculate the following:
Background
e P(no attacks next year)

) — 2k .6 (o) _2b. b -\\

Bernoulli P(x=o)e Bo)z € (2L6) o7 9 oTmle
o \ on
Binomial [0 sibely 4o hawe o ~Relks )
Geomet”c o P(at least 5 attacks)
P(XSE) = \- P(x¢es5)= \— P(XLC &)

Poisson

- \- [2(93« €+ Floy « (N~ f‘(lP]]

= - = 0999249 (go probeble fo have
e P(more than 10 attacks) ot \ea<t N C.H‘Cb)

P(x>Fe) =\-pcx& o) = oo,
7575
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