STAT 305: Chapter 6

Introduction to formal statistical inference
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Large Sample
Inference

Large Sample Confidence Interval

Formal statistical inference uses probability theory to
quantify the reliability of data-based conclusions. We want
information on a population.e.g

» true mean fill weight of food jams

e true mean strength of metal bars

» true mean of the number of accidents on a
highway in Iowa

We can then use:

1. Point estimates:

e.g sample mean X of the strength of metal bars is
4.83.

We would then say that X is an estimate
for true (population ) mean u.
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Large Sample
Inference

Large Sample Confidence Interval

1. Interval estimates:
w 1s likely to be inside an interval. (e.g

1 € (2.84,5.35))

Then we can say we are confident that the true mean of
the strength of metal bars () is somewhere in the

(2.84,5.35)

But the question is how confident?
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Large Sample
Inference

Large Sample Confidence Interval

Many important engineering applications of statistics fit
the following mold. Values for parameters of a data-
generating process are unknown. Based on data, the goal
is

1.identify an inteval of values likely to contain
an unknown parameter

‘2.ql1alify "how likely§ the interval is to cover
the correct value of the unknown parameter.
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Confidence Interval

Definition and the use



Large Sample Confidence Interval

Inference

Definition: confidence interval for a parameter (or
Confidence function of one or more parameters) is a data-based
Interval interval of numbers thought likely to contain the

parameter (or function of one or more parameters)
possessing a stated probability-based confidence or
reliability.

A confidence interval is a realization of a
random interval, an interval on the real line
with a random variable at one or both of the
endpoints.

V-2, T~ I-ot
2 N %
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Large Sample
Inference

Confidence
Interval

Example:[Instrumental drift]

Let Z be a measure of instrumental drift of a random
voltmeter that comes out of a certain factory. Say
Z ~ N(0,1). Define a random interval:

(Z—2,Z+2)
What is the probability tha@is inside the interval?

P(—1lisin (Z—-2,Z+2)=P(Z-2<-1<Z+2)
=P(Z-1<-1<7Z+3)

=P(-1<-Z<3)

=P(-3<Z<1)

= (1) - (-3)

= 0.84.
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Large Samp|e Example:[More practice]

Inference Calculate: , »
Id
« P(2in (X —1,X+1)), X ~ N(2,4 2
Confidence (2in ( N XN ot
Interval

PRl (X —1,X +1)) _%X—14:kX+1
12X < 1)

<“/ ( 1/2<X< 1/2)

— 3(1/2) - 3(-1/2)
= 0.6915 — ()3085
— 0.383

POk {2k 3t < £y cm k)

= ®
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Large Sample
Inference

Confidence
Interval

g;né. A S.T

P et r )] = -d

(S‘rcm daC & Z_Q,T\.QV\> ~ N(O, ]_) ’& (2-\ -

A

W& Know

Example:[Abstract random intervals]

Let's say X1, Xo,..., X, are iid withln > 29, &nean 7
variance o2. We can find a random interval that provides
a lower bound for u with 1 — o probability:

We wan{A)such that{P(,u € (@—I—oo)) =1- aj
We know by CLT:

X ~ N(u,0°%/n)
Therefore,

v
> ¥

~

—
PLEALD) e 1o ////%\ <
. ®.
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Large Samp|e Example:[Abstract random intervals]
Inference Then

~*~
Confidence p(@;@ <ZiJ)~l—o
Interval @) Vn

|

sdve 4 For o p )_(—Z_ai

®

LRecall s wete neeminy e S pue (X — 2y
oo C1 Hr ) v

Now if we set

then we have
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Large Sample
Inference

Confidence
Interval

o
Gove T €°®:P(X — Rl-a/2T —

s

(P 3 e Palemeater 14 :P(—Zl—a/z

Q\"\ST X
_

é.oes;\]'\ have eQn
But 2 ~u )

Example:[Abstract random intervals]
Calculate:

P(/J, c ()?@Zl_aﬂ%af@zl—aﬂ%))a

o

X ~ N(p,0%)

f—\,—/\-’\/_
o

Plpe (X — Zl—a/2—7)—(+ 21-a/2—=))

—

m——

/n

N

—

Recolle e Find C,

For Unkwown

Pl cmtie(s

:P(_Zl—a/2 < < zl—a/2)
: -

=P(—z1_q/2 < @< Z1-/2)

of The PoPuleton.

~] — o

( The last result is by CLT assuming tha‘ n > 25 lz

o ~

2 <D< ap

N 21 /2\/5)
o — o

:P(_zl—a/2ﬁ < zl—a/2ﬁ)

/n

o

<pu < E‘F zl—a/2—)

Vvn

o

2.~ (1)

<\ [ ] /L@
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Large Samp|e Example:[Abstract random intervals]

|ﬂf€l'€ﬂCe So, p falls within the interval
% (X — z1_4)2==, X + 2;_,/o—=) with the probability of
Vn Vn —
Confidence I - aforX ~ N(i,0?) ool
Interval - —— s

(e we alfe oo (1- 2 ) LQ‘S 95) ) Con i dea

’h,\o“\* m 1 e Po\('c.\mtf“ec r\ N "ho_ A'\S’-]

X N N C( T‘; (3"1) ?o\\\s \pl)\\»'d\ 'h,L ;ﬂ'\ﬂ\lc.j\

(i’z""*/ 3 > i_"(z\—ce %\‘3

zg,’: Yo
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A large-n confidence interval
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Large Sample A Large-n confidence interval for L« involving o

Inference

Confid (1- @)% confidence interval for an{unknown
onfiaence parameter is the realization of a random interval that

|nterva| contains that parameter with probability 1 — a.

@is called the confidence level

Clfor L

For random variables X7, Xo, ..., Xnith

¢ (E(X,) = %Var()({h) = g2, a(l— a)% confidence

6.3-. o2 0.02 interval fox p)is Ao
L Bet lage (193 o
=>"eel1- 0023/ 253/ —> (T — 21 app—=12T + 21 ap—=)

which is a realization from the random interval

— — o
X —21_q—=, X + 21_qn——).
( 1 /2\/5 1 /2\/5)
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Large Sample

o \asa e
inference In General ( A: 2D

Confidence

Interval W (E—zl_a_/zln,i—l—zl_%i) v

0{}1, \ S ’\/ﬁ
= &
<. c % el
x E-J-N,L't\ o == "

» One-sided 100(1 — «)% confidence interval for
with a upper confidence bound

— (—o0, E@zl@%)

| - o(

Clfor L

x *'a,_f/g\- One-sided 100(1 — o) % confidence interval for
with a lower confidence bound

o
21 ) —— , + 00
(2O 1@ﬁ )
\ —
lowet bowa d 4 ) =
?O(’ r\ Y’\__ i"ngz %\

o Two-sided 100(1 — )% confidence interval fox@
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large Sample  Example:[Fill weight of jars]

Inference Suppose a manufacturer fills jars of food using a stable
filling process with a known standard deviation of
(@ = 1.6g) We take a sample om1ars and measure

(onfidence the sample mean weigh{ z = 138.2g) A two-sided 90%
Interval confidence interval, @ = 0.1, for the true mean weight
is: o
_ @ _ o
CI for/l' (_3_3 —Rl—a/2T =T +z1—a/2—)
| Ve v
0/ — (z <z 7

(z —\21-0.1/2 —> H21-0.1/2—F=

,._T.? , 138.2 + 25 ;%)

° —((038.2]— 1.64( 23 ,(138.2)+ 1.64(.23))
(137.82, 138.58)

0.3%
: L 64 or we can write 1tas. 0.38g
o.|
Y «= 2 E
© .9 ¥\)
Cchec¥: . & 17/48



large Sample  Example:[Fill weight of jars]

Inference ~ Interpretation: & ™)
We are 90% confident that the true mean is
Confidence between 137.82g and 138.58¢
Interval
Or we can say
C| fOI' If we took 100 more samples of 47 jams each,
,U roughly 90 of those samples would have a

i

confidence interval containing the true mean fill
weight
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Large Sample
Inference

Confidence
Interval

Clfor L

Example:[Fill weight of jars]

What if we just want to be sure that the true mean fill
weight is high enough?

We could use a one-sided 90% CI with a lower bound:
W

- o
T — R —, + 00
G
1.6
= (138.2 — z = + 00)
= (137.91, + o0)

Then we would say:

We are 90% confident that the true mean fill

weight is above 137.91 M
NS

rd
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Large Sample
Inference

Confidence
Interval

Clfor L

Example:[Hard disk failures]

F. Willett, in the article "The Case of the Derailed Disk
Drives?" (Mechanical Engineering, 1988), discusses a
study done to isolate the cause of link code A failure in a
model of Winchester hard disk drive.

For each disk, the investigator measured the breakaway_
torque m required to loosen the drive's interrupter
flag on the stepper motor shaft.

—

Breakaway torque 26/disk drives were recorded, with

a sample mean of 11.5)in. oz. Suppose you know the true

standard deviation of the breakaway torques ig 5.1)in. oz.
N—

20 /48



Large Samp|e Example:[Hard disk failures]

Inference Calculate and interpret:
fid two-sided 90% confidence interval for the true
COﬂ ldence mean breakaway torque of the relevant type of
Interval Winchester drive.
, z o _ + o )
Y . T—2{_go——, T+ 21_n9——
(forp o007 2/ e e
_ o _ o
=2 )-e= o) = (z.— 21— 01/2—a5'3+21—0.1/2—)
n n
@ 11 5 11.5 + é
,___- — 295" A=) ~.95

= (11.5 — 1.64(1.0002) , 11.5 4 1.64(1.0002))
= (9.86, 13.14)
/\/\/\/\—-—\
+ Interpretation: we are 90% confident that the true

mean breaking torque lies between 9.86 and 13.14
in.oz.

A
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arge Sample  ExampleWwidh of a 1T )

|ﬂf€l’€ﬂC€ If you want to estimate the breakaway torque with a 2-
sided) 95%onfidence interval with £2.0 in. oz. of

Confidence precision, what sample size would you need?
—~—
Interval l Interval precision = interval half width \

Therefore, for a two-sided 95% CI we have

Clfor L o o

(E - Zl—a/2—75 + zl—a/2—)

Vi v

which means that the precision is;zl_a /2 % )

We want zq_q /9 —— < 2

Vv —
VR T i S N
- o Rz
ﬂL \CV‘G-\’L\ 'Dg ﬁ»'ﬂ ;x\w\/&-’Q—o X + zl—a/%\ B -,
c
27 &’
="y R
=

22 [ 48



large Sample  Example:[width of a CI]

Inference So,
\- =205 5.1
(onfidence 2155 < 2
< O O; n
Interval .

&’z 5.1 <
Clfor w4
oV

We would need a sample of at least 25 disks to have at
least a precision of 2 in.oz

——
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A large-n confidence interval

fc ;o the o :Unknown



Large Sample

Inference

Confidence
Interval

Clfor L

Clfor L
unknown o

2

A generally applicable large-n confidence interval for

N APy

Although the equations for a\fl — a)% confidence

interval is mathematically correct, it is severely limited in
its usefulness because it requres us to know(a®(the
population variance). It is unusual to have to estimate u

and know o in real life.

Ifin > 25land o is unknown, Z = c%, where
1 n
@: n—1 Z(mi—w)2.

1=1

is still approximately standard normally distributed.

So, you can replace o in the confidence interval formula
with the sample standard deviation, s.
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Large Sample

Inference

Confidence
Interval

Clfor L

Clfor L
unknown o

2

A generally applicable large-n confidence interval for
I

o Two-sided 100(1 — )% confidence interval for p

P,

(T — 21 0/2==,T + 21_q)2—=)

Vn v

e One-sided 100(1 — )% confidence interval for p
with a upper confidence bound
(—o0, x + zl_a@)

N

» One-sided 100(1 — a)% confidence interval for y
with a lower confidence bound

®)

@202, +o0)

\/ﬁ )
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Large Sample
Inference

Confidence
Interval

Clfor L

Clfor L

unknown o2

Example:

Suppose you are a manufacturer of construction
equipment. You make 0.0125 inch wire rope and need to
determine how much weight it can hold before breaking
so that you can label it clearly. Here are breaking
strengths, in kg, for:_il_l_ sample wires:

[1] 100.

[6] 107.
[11] 122.
[16] 101.
[21] 88.
[26] 92.
[31] 62.
[36] 72
[41] 86.

The sample mean breaking strength is 91.85 kg
and the sample standard deviation is 17.6 kg.

S

37
80
04
79
o7
53
00

.40

97

96.
75.
115.
80.
56.
86.
93.
71.

31 72.
84 92.
12 95.
90 96.
29 86.
25 82.
00 98.
29 107.
X

57
73
24
10
50
56
44
24

88.
67.
119.
118.
57.
97.
119.
64.

02
47
75
51
62
96
37
82

105.
94.
114.
109.
74.
94.
103.
93.

89
87
83
66
70
92
70
51
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Large Samp|e Example: Using the appropriate 95% confidence interval,
Inference try to determine whether the breaking strengths meet the

requirement of at\least 85 kg./

Confidence (l1-a=.95, z=91.85 , s=176 , n=41)
Interval The CI is then
_ S
Clfor L (z - Fa@ o +0)
17.6
= (91.85 — 295 ==, +0)
Clfor pt 2
9 17.6
unknown — (91.85 — 1.64—— , + 00
own o ( Vi )
= (87.3422, + o0)

With g@% confidence, we have shown that the
true mean breaking strength is above 87.3422
kg. -
Hence, we meet the 85kg requirement with
95% confidence ~—
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Small-sample Confidence Interval

for aMean



Large Sample
Inference

Confidence
Interval

Clfor L

Clfor L

unknown o2

Small-sample confidence intervals for a mean

e The most important practical limitation on the use of

the methods of the previous sections is the
requirement that » must be large (> 25)

That restriction comes from the fact that without it,

S/
approximately N (0, 1). (i.e we cannot use CLT when
sample size is small)

H that is

there is no way (in general) to calculate

So, if one mechanically uses the large- n interval
formula x + zin with a small sample, there is no

NG

way of assessing what actual level of confidence
should be declared.
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Large Sample

Inference

Confidence
Interval

Clfor L

Clfor L
unknown o

2

Small-sample confidence intervals for a mean

o If it is sensible to model the observations as.iid
normal random variables, then we can arrive at
inference methods for small#n$ sample means.

In this case (small sample size), x & zin 1S not standard

NG

Normal anymore, BUT it is a different normed
distribution! —
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The Student t Distribution



Large Sample
Inference

Confidence
Interval

Clfor L

Clfor e

unknown o2

t Distribution

t Student distribution

Definition: The (Student) ¢ distribution with degrees of
freedom parameter@is a continuous probability
distribution with probability density

v+1
r(5)
I ( % ) \/ TV
The t distribution

e is bell-shaped and symmetric about 0

 has fatter tails than the normal, but
approaches the shape of the normal as
vV — 0Q.

T \ﬂ\&a{js *EG\S)

f(t) =

@

‘—l_(x) :(X\_

t2 —(V+1)/2
(1 + —) for all t € R.
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Large Sample
Inference

Confidence
Interval

Clfor we

Clfor 1

unknown o2

t Distribution

t Student distribution

We use the ¢ table (Table B.4 in Vardeman and Jobe) to
calculate quantiles.

041

T

=2 Shd o ’“O"Q‘LMCQ"D)

e
LK .

_{?If 5
) PR
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Large Sample
Inference

Confidence
Interval

Clfor we

Clfor 1

unknown o2

t Distribution

t Student distribution

Example: Say@v @Find c such that P(T' <c)

2V

Table B.4

t Distribution Quantiles

o 0(95) Q(975) Q(99) 0Q(995) 0(99) Q(9995)
1 3078 6314 12706 31.821 63.657 318.317 636.607
2 1.886 2920 4.303 6.965 9925 22327 31.598
3 1.638 2353 3.182 4541 5.841 10.215 12.924
4 1.533 2.132 2776 3.747 4,604 7.173 8.610

@ 1476 2015 2571 3365 4032 5.893 6.869

So, P(T < ¢) = 0.9 holds true if ¢ = 1.476 (by the table).

P(T g\ 476)=°9
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Large Sample
Inference

Confidence
Interval

Clfor e

Clfor L

unknown o2

t Distribution

Small

unknown o2

Small-sample confidence intervals, o unknown

If we can assume that X4, ..., X, are iid with mean pu

and variance 02, and are also normally distributed, if
n < 25, we cannot use CLT.

It is not easy to prove but,
X —p
S/\/n

We can then use ¢,,_1 1_,/2 instead of 2;_, /5 in the
confidence intervals.

tn—l

Note that the df (degree of freedom) for the t distribution
isn — 1.
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Large Sample
Inference

Confidence
Interval

Clfor e

Clfor L

unknown o2

t Distribution

Small

unknown o2

Small-sample confidence intervals, o unknown

e Two-sided 100(1 — o) % confidence interval for p

— s S
T —\th-11-a S — L +in-1,1-a/2—=
(z —|tn-11 /%3\/% 1,1 /2\/5)

» One-sided 100(1 — a)% confidence interval for p
with a upper confidence bound

R

o One-sided 100(1 — a)% confidence interval for
- .
with a lower confidence bound
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Large Samp|e Example: [Concrete beams]

Inference 10 concrete beams were each measured for fle
Lstrength (MPa). Assuming the flexural strengths are iid

-s==rra, calculate and interpret a two-sided 99\% CI for the
|C0tnﬁde|n (e flexural strength of the beams. =~ ~—  — ——
nterv
eI [1]18.28.77.89.77.47.87.711.611.311.8
Clfor e < n=le
K zo0.0\
(I for %= LEx s L (823 Fs . +N\3)=92
n 12 lo
unknown o2
SR % (L%s ’7?)1
t Distribution ney Ten
LS 9.9 {2
- L N .l
Small 2 o 1 g )
unknown o2

—_—

1
= AT o)t (8 A9«
7 39/48
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Large Sample
Inference

Confidence
Interval

Clfor e

Clfor L

unknown o2

t Distribution

Small

unknown o2

(95\% CL.

Example: [Concrete beams]

Is the true mean flexural strength below the minimum
requirement oﬁ 11 MPa?Find out with the appropriate

g(«\é [N u\e—s'..‘\eo_‘ Cl' (U‘?Pe(' C_l)

(oo, % &t S
b )

- (;—QO) 9.2 %'t: \‘t%é

9)\— \\’\—;

1><J’°° 3‘9~iL T t: N \-t%é;

9/ 095

(o0 5, 2.2 £ \.333, L4 J
&

:‘C— O, o0.22)
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Large Samp|e Example: [Paint thickness]

Inference Consider the following sample of observations on coating
thickness for low-viscosity paint. (gwm )

Confidence < [1] ©.83 ©.88 0.88 1.04 1.09 1.12 1.29

Interval [8] 1.31 1.48 1.49 1.59 1.62 1.65 1.71
[15] 1.76 1.83
A normal QQ plot shows that they are close enough to
(l fOI' ,LL normally distributed.
Clfor e
unknown o2
t Distribution &
Small o
unknowno? L ; 1-

theoratical
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Large Samp|e Example: [Paint thickness]

—
Inference Calculate and interpret a two-sided 90% confidence
interval for the true mean thickness.

(I for 1 K= (o3 ~- 11 B3) = 130w
Cl for D \D—ib\ >
unknown o2 \6) (0:82-1.35) %% —= (- 33 - (25
t Distribution

= . Z—P m I
Small > \‘ﬁ
unknown o2
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Let's Wrap Up



Large Sample
Inference

Confidence
Interval

Clfor L

Clfor e

unknown o2

t Distribution

Smalln

unknown o2

Wrap Up

Common Assumptions and Common Statements

Suppose that X7, X, ..., X,, are random variables
whose values will be determined based on the results of
random events.

Large Sample Size, Known Variance
Assuming:

° E(XZ):IU”
en > LS

« Var(X;) = o? is known

Then by CLT,

100(1 — a)% Confidence interval for p:

X+ i
- A
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Large Sample
Inference

Confidence
Interval

Clfor L

Clfor e

unknown o2

t Distribution

Smalln

unknown o2

Wrap Up

Common Assumptions and Common Statements

Large Sample Size, Unknown Variance

Assuming:
« BE(X;) = p,
e n >85>

« Var(X;) is unknown, but sample variance
S? = 3" (X; — X)? can be calculated

n—1

Then by CLT and convergence of sample
variance

X—p

ST

~ N(0,1)

100 - (1 — a)%-Confidence interval for yu:

_ —
T x Zla/2\/@
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Large Sample
Inference

Confidence
Interval

Clfor L

Clfor e

unknown o2

t Distribution

Smalln

unknown o2

Wrap Up

Common Assumptions and Common Statements

Small Sample Size, Unknown Variance

Assuming:
« BE(X;) = p,
. n <BO>D

« Var(X;) is unknown, but sample variance
2 1\ 7\ 2
§% = -5 > i1 (Xi — X)" canbe
calculated

Then by CLT and convergence of sample
variance

X —p
S?/n

™ tn—l

100 - (1 — a)%-Confidence interval for yu:
2

— + S
X T /‘/\

T, 9) 46 /48



Large Sample
Inference

Confidence
Interval

Clfor L

Clfor e

unknown o2

t Distribution

Smalln

unknown o2

Wrap Up

Common Assumptions and Common Statements

With the last set of assumptions, we can conclude that
X —p
v/ S?%/n

freedom"

follows a "t-distribution with n — 1 degrees of

The t-distribution looks a lot like a standard normal
distribution and we use it the same way:

Ve Itis symmetric

o Itis centered at0
« Important quantiles are collected together in tables
for reference

It only has one parameter, the degrees of freedom. In this
class, the degrees of freedom are related to the number of

parameters being tested "
x degrees of freedom = (# of observations) - (# of

parameters)
~— T
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