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W ENEN
Deciding What's True (Even If We're Just Guessing)



Let's Play A Game
A "Friendly” Introduction to Hypothesis Tests



My Game
The Rules

Let's Play A Game

The semester is getting a little intense! You are a livinLet's
break the tension with a friendly game.

Here are the rules:

e I have a new deck of cards. 52 Cards, 26 with Suits that
are Red, 26 with Suits that are Black

» You draw a red-suited card, you give me a dollar

* You draw a black-suited card, I give you two dollars

Quick Questions

What is the expected number of dollars you will win
playing this game?

Would you play this game?
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Are We Forgetting Something?



My Game Be Careful About Your Assumptions

The Rules

Pause for a minute and think about what you are
assuming is true when you play this game. For instance,

The \ e You assume I'm going to shuffle the cards fairly
ASSUITIptIOI'IS « You assume there are 52 cards in the deck
e You assume the deck has 26 red-suited cards in it
e You assume the deck has a red-suited card in it

How can we make sure the assumptions are safe??

« Shuffling assumption: watch me shuffle, make sure
I'm not doing magic tricks, etc

« 52 Cards assumption: count the cards

» Red-suit assumption: Count the number of red cards

Whew! We can actually make sure all of our assumptions
are good!
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One Problem
| Refuse to Show You The Cards



Do You Trust Me?
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My Game
The Rules

The
Assumptions

Our Assumptions

I'm not going to show you all the cards. In other words, I
refuse to show you the population of possible outcomes.
This is justified: we are in a statistics course after all.

So, let's start with our unverifiable assumption: Is it safe to
assume that this is a fair game. Why would we make this
assumption?

e You trust that I'm (basically) an honest person
(assumption of decency)

e You trust that I'm getting paid enough that I wouldn't
risk cheating students out of money (assumption of
practicality)

e You saw the deck was new (manufacturer trust
assumption)

e You want it to be an fair game because you would win
lots of money if it was (assumption in self-interest)
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My Game Our Assumptions

The Rules

In statistical terminology, we wrap all these assumptions
up into one assumption: our "null hypothesis" is that the
The game is not rigged - that the probability of you winning is

Assumptions
Null Hypothesis
The assumptions we are operate under in
normal circumstances (i.e., what we believe is
true). We wrap these assumptions up into a
statistical/mathematical statement, but we will
accept them unless we have reason to doubt
them. We use the notation H to refer to the
null hypothesis.

In this case, we could say that the probability of winning is
p and that would make our null hypothesis

Hop:O5
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My Game
The Rules

The
Assumptions

Our Assumptions

Of course our assumptions could be wrong. We call the
other assumptions our "alternative hypothesis":

Alternative Hypothesis

The conditions that we do require proof to
accept. We would have to change our beliefs
based on evidence. We use the notation H 4 (or
sometimes, H;) to refer to the alternative
hypothesis.

In this case, we could say that our alternative to believing
the game is "fair" is to believe the game is not fair, or that
the probability of winning is not 0.5. We write:

H,:p#05
Of HA_X P>05

D = .65 & HA_ - P<0;

O
1
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A Compromise
| Won't Show You All The Cards
But | Will Let You Test The Game



My Game
The Rules

The
Assumptions

The Test

Testing the Game

The test of whether or not the game is worth playing can
be defined in term of whether or not our assumptions are
true. In other words, we are going to test whether our null
hypothesis is correct:

Hypothesis Tests

A hypothesis test is a way of checking if the
outcomes of a random experiment are
statistically unusual based on our assumptions.
If we see really unusual results, then we have
statistically significant evidence that allows
us to reject our null hypothesis. If our
assumptions lead to results that are not
unusual, then we fail to reject our null
hypothesis.
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My Game
The Rules

The
Assumptions

The Test

Testing the Game

So how can we test the game? What if we tried a single
round of the game?

« What are the probabilities of the outcome of a single
game?

» If we draw a single card do we have enough evidence
that the game is fair?

« Do we have enough evidence that the game is rigged?

Based on a single round of the game, both of the possibel
outcomes are pretty normal - that's not good enough.

If we draw a losing card, then we might be inclined to call
the game unfair - even though a losing card is pretty
common for a single round of the game

If we draw a winning card, then we might be inclined to
call the game fair - even though a winning card may be
common even when the game is not fair!

We can make lots of mistakes!!

14 /53



My Game
The Rules

The
Assumptions

The Test

The Errors

The Mistakes We Might Make

We could of course be wrong: For instance, we could, just
by random chance, see outcomes that are unusual for the
assumptions we make and reject the assumptions even if
(in reality they are true). This is called a "Type I Error"

Type I Error

When the results of a hypothesis test lead us to
reject the assumptions, while the assumptions
are actually true, we have committed a Type I
Error.
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My Game The Mistakes We Might Make

The Rules

A common example of this is found in criminal court:

Th e « We assume that a individual accused of a crime is
. innocent (our assumption)
Assumptlons « After examinig the evidence, we conclude that it is

there is no reasonable doubt the person is not
innocent (in other words, we reject the assumption

The Test because it is very unlikely to be true based on our
evidence).
 If the person truly is innocent, then we have
The Errors committed a Type I error (rejecting assumptions that
were true).
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My Game
The Rules

The
Assumptions

The Test

The Errors

The Mistakes We Might Make

We could also make a different error: we could choose not
to reject the assumptions when in reality the assumptions
are wrong.

Type II Error

When the results of a hypothesis test lead us to
fail to reject the assumptions, while the
assumptions are actually false, we have
committed a Type II Error.

17 /53



My Game
The Rules

The
Assumptions

The Test

The Errors

The Mistakes We Might Make

Again, if we consider the example of criminal court:

« We assume that a individual accused of a crime is
innocent (our assumption)

« After examinig the evidence, we conclude that it is
there is not evidence beyond a reasonable doubt the
person is not innocent (in other words, the evidence is
not enough to reject our assumption because it is still
reasonable to doubt the accused's guilt).

« If the person truly is not innocent, then we have
committed a Type II error (failing to reject
assumptions that were false).

In general, we want to make sure that a Type I error is
unlikely. To take the example of court again,

« We commit a Type II error: a guilty person goes free
« We commit a Type I error: an innocent person goes to
jail; the guiilty person is still free
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My Game
The Rules

The
Assumptions

The Test

The Errors

The Mistakes We Might Make

Let's go back to my game: We assume I am an honest
person (i.e., we assume that the probability of winning a
single game is p = 0.5)

Type I Error: Rejecting True Assumptions

» We gather evidence

» Looking at our evidence, we decide that the game was
not fair even though it was.

» Fallout: you slander me, you disparge me, we have a
fight, BOOOM.

Type II Error: Failing to Reject False Assumptions

» We gather evidence

» Looking at our evidence, we decide that the game was
fair even though it was not.

» Fallout: you play the game and lose some money.

Ideally, we won't make either error. However, we can only
base our decision of our evidence we can gather - the truth
is out of our grasp!
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My Game
The Rules

The
Assumptions

The Test
The Errors

The Evidence

Gathering Statistical Evidence

Okay, so we don't want to make either error - that means
we need good evidence.

Like we talked about before, even if the game is fair one
test round of the game would not be enough to make a
good decision since drawing a red-suited card and
drawing a black-suited card are both pretty normal for a
single round of the game.

But what if we played the game 10 times in a row? After 10
rounds, do you think we would have enough evidence to
make a decision about our assumption?
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My Game
The Rules

The
Assumptions

The Test
The Errors
The Evidence

p-value

P—v e = P Labief‘vf\'/a

v

p-value

If we assume the null hypothesis, then we can make some
assumptions about what results are likely and what
results are unlikely. We describe the likelihood of the
results that we actually get using a p-value

p-value

After gathering evidence (aka, data) we can
determine the probability that we would have
gotten the evidence we did if our assumptions
were true. That probabiliity is called the p-
value. If the p-value is really, really small that
means that the assumptions we started with
are pretty unlikely and we reject our
assumptions. If the p-values is not small, then
the evidence collected (aka, the data) is pretty
normal for our assumptions and we fail to
reject our assumptions.

SomR vssr\v\SwJL ‘2\’@“*5\

D p—
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My Game
The Rules

The
Assumptions

The Test
The Errors
The Evidence

p-value

In other words, we collect evidence and determine a way
to measure the whether or not our data was unusual if our
assumptions are true.

If we have a very, very low chance of

« seeing both our results and
« having true assumptions then we reject the
assumptions

Going along with the terminology we have introduced, if
we have a small p-value then we reject our null
hypothesis.
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My Game
The Rules

The
Assumptions

The Test
The Errors
The Evidence

p-value

Gathering Statistical Evidence

In this game, if we assume that the game is fair, we have

» two outcomes: success (winning) and failure (losing)
« a constant chance of a successful outcome (p = 0.5),

assuming the game is fair)
e independent rounds of the game (assuming fair
shuffle, which we can check)

In other words, if we test the game 10 times we can model
the number of successful outcomes as binomial: For X =
the total number of wins,

P(X =)= %w)!mé)‘”(l —0.5)10

L

This gives us a way of getting our p-value
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Let's Test the Game



My Game
The Rules

The
Assumptions

The Test
The Errors
The Evidence

p-value

The
Conclusion

Gathering Statistical Evidence

We played the game. Let's figure out whether our results
were unusual or not.

Again, we assume the game is fair and have decided that
the number of times we win will follow a binomial
distribution with probabiliity function

10!
P(X = 1) = ==T(10 — 2)!(0.5)"(1 — 0.5)'°""
L.

Now we need to make a conclusion: do we accept or reject
our assumptions? What do we consider unusual? Is it fair
to decide after we play?



My Game
The Rules

The
Assumptions

The Test
The Errors
The Evidence

p-value

The
Conclusion

Summary

e Sometimes we can know if something is true or not by
examining the truth directly, but not always
e When we can't examine the truth, we need to test
what we believe to be true
A statistical test is a tool for testing our assumptions
about what we believe
o We state our assumed belief (generally our
current beliefs, or the ethical beliefs, or the beliefs
we hope are true, ...)
o We come up with a way of collecting data that
could validate or invalidate our assumption
o We measure how likely it was that we would have
gathered the data we did if our assumptions were
correct
o We reject the assumptions if our data is very
unlikely we are our current beliefs
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Now let's make everything

3 little more formal



Section 6.3
Hypothesis Testing



Hypothesis
Testing

Hypothesis testing

Last section illustrated how probability can enable
confidence interval estimation. We can also use
probability as a means to use data to quantitatively assess
the plausibility of a trial value of a parameter.

Statistical inference is using data from the sample to
draw conclusions about the population.

1. Interval estimation (confidence
intervals):
Estimates population parameters and
specifying the degree of precision of the
estimate.

\r 1. Hypothesis testing:
Testing the validity of statements about the

population that are formed in terms of

parameters.
e

e - we +est e vﬁ\“.é_ZB o 2
Pol u\aRon P 1o, 29 /53



&%J_I\ 5-—/.\_(‘ o )oa\
Hypothesis | 502 .

- Definition: (Pofu\etdon  mesn
Testing efinitio MR ).
Statistical significance testing is the use of data in the
NU" quantitative assessment of the plausibility of some trial
value for a parameter (or function of one or more
parameters).

Significance (or hypothesis) testing begins with the
specification of a trial value (or hypothesis).

A null hypothesis is a statement of the form

Parameter = #

or I

Function of parameters = #

for some|#that forms the basis of investigation in a
significance test. A null hypothesis is usually formed to
embody a status quo/"pre-data” view of the parameter. It is
denoted Hy.
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Hypothesis

- Definition:
Testing

An alternative hypothesis is a statement that stands in
NU" opposition to the null hypothesis. It specifies what forms
of departure from the null hypothesis are of concern. An
alternative hypothesis is denoted as H,,. It is of the form

Alternative
Parameter 7
or M~
Parameter@# or Parameter @#
Examples (testing the true mean value):
<H0=M=# Ho:p=# %Ho=u=#
3 @ H, : H, : H, :
PRELNEY A D Heip># Hoip<#
M\k“zﬂb Often, the alternative hypothesis is based on an
investigator's suspicions and/or hopes about th true state
of affairs.
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HypotheSiS The goal is to use the data to debunk the null hypothesis in
Testi favor of the alternative.
esting

1. Assume Hj.

NU" 2. Try to show thatthe data are preposterous.

(using probability)
Alternative 3.e data are preposterous, reject Hy and conclude
Wo s ecAwally The outcomes of a hypothesis test consists of: PP"'*Cé\_
No( Yo
Tlwe, b we foll - Ve wWrmadt. deCig)on experired!
£o f‘cbt(k Be- \ A ?a\\IDJ ol ° 7
Ho \'-\o\ (’LT"?&]— e((bO:o(
N Tipe 1 A L
/] L
—_— \7\ © O \(L TLL 6(0‘3- e?’ (ejei‘—':j
|Cre staiR S (CoC.
: Yo whea o
of CrfeNments ~ T ) '
€ v onC\ &
e enob. of &CCCF\fj b ecoC ) touel

He when K% acieally alor} ( 32 /53



: )

\

H, ¢ = ct vallq Jrwe &

Hypothesis "
Testing Probability of typelerror . (. NeT N e
Cavol 9p Ho\.
It is not possible to reduce both type I and type II erros at
NU" the same time. The approach is then to fix one of them.
& (e & ree +LL d m Qe |
. We then fix the probability of type I error and try to
Alternative minimize the probability of type II error.

-®  We define the probability of type I error to be o
(the significance level)

(a3 in CT 2 we heve ((—o)+ Me
CDA&&GNQ \Q“"L/Q
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Hyp0thESiS Example: [Fair coin]

TEStIﬂg Suppose we toss a coin . = 25 times, and the results are
denoted by X1, Xo, ..., Xo5. We use€ 1 to denote the result
NU" of a head and 0 to denote the results of a tail. Then

X1 ~ Binomial(1,(p) where p denotes the chance of
getting heads, so E(X7) = p, Var(X;) = p(1 — p). Given
Alternative the result is you got all heads, do you think the coin is fair?

Null hypothesis : Hy : the coin is fair or Hy : p = 0.5
Alternative hypothesis : H, : p # 0.5

% If Hy was correct, then
P(results are all heads) = (1/2)2% < 0.000001

ohse(ved 2 = I don't think this coin is fair (reject Hy in favor
of H,)
hea L<

?
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HypothESiS In the real life, we may have data from many different
kinds of distributions! Thus we need a universal

TEStIﬂg framework to deal with these kinds of problems.
Null We have n = 25 > 25 iid trials = By CLT we know if
/HO : p = 0.5(= E(X)) then
5 91
und® C —

Alternative ™,

a\\ 2.5 o b, —>We obsrve X = 1,[so
o [ headS |

l Vo(()()
B ~
X 05 1-05 @

X = ﬂﬂ; (r=-% ¥o5) /05(1—0.5)/25 - v/0.5(1—0.5)/25 -

=\, (2 1;) - { Then the probability of seeing as wierd or wierder data is
15

P(Observing something wierd or wierder) =
P(Z bigger than 5 or less than -5)
< 0.000001
NN —

——A ’lb\_, 35/53
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Hypothesis
Testing

Null
Alternative

P-value

\'\oﬁ IN\: POQ
Known

g

K-

—~

A

-~ \L_

Significance tests for a mean

Definition:
A test statistic is the particular form of numerical data
summarization used in a significance test.

Definition:

A reference (or null) distribution for a test statistic is the
probability distribution describing the test statistic,
provided the null hypothesis is in fact true.

Definition:

The observed level of significance or p-value in a
significance test is the probability that the reference
distribution assigns to the set of possible values of the test
statistic that are at least as extreme as the one actually

observed.
o ISP

\/ 2 /////\

obseed - ° 36/53



Hypothesis
Testing

Null
Alternative

P-value

Na\ L oA ta sk
StamgiNC |

Significance tests for a mean

In the previous example, the test statistic was

o %piiﬁ)/n

In the previous example, the null distribution was N (0, 1)

In the previous example, the p-value was < 0.000001

lbeconse  hu.  pouelne < (s et
Ve )

We o {eheet o antl By potesic

(€ W hone e_,\oﬁ\ﬁ evidence o (eject H, &

sere Mot o con i3 net= Feir (709
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Hypothesis
Testing

Null
Alternative

P-value

Significance tests for a mean

In other words:
Let@be the test statistics value based on the data

Sa
Y ~, kz_v\ou)

%Hoi,u:/io/
l

Hy:p# o)

P(observing data as or more extreme as K)
= P(Z < —KorZ > k)

is defined as the p-value
—

y 2P \ [/
~\— \
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Hypothesis
Testing

Null
Alternative

P-value

Significance tests for a mean

Based on our results from Section 6.2 of the notes, we can
develop hypothesis tests for the true mean value of a
distribution in various situations, given an iid sample
Xl,...,anhereHO = Ug.

—~—

Let@e the value of the test statistic, Z ~ N(0, 1), and
T ~ t, 1. Here is a table of p-values that you should use
for each set of conditions and choice of H,,.

Situation K J| Ho:\pe # po ) Hodpp < po) He o pp > po

n > 25,0 known g;ﬁ% P(|Z| > K) P(Z<K) P(Z>K)

n > 25,0 unknown f—_\/‘“—% P(|Z|>K)| P(Z<K) P(Z>K)

—=>n < 25,0 unknown f;ﬁ% P(T|>K) P(T<K) P(T>K)
(daNen o re N

iid Av o))

Possig)e 1l A aA R3¢
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Testing
Null
Alternative
P-value

1T nzel al\

6 Steps o WW

&

Hypothesis

Eam,

Steps to perform a hypothesis test

. State Hy and H;

. State q, significance level, usually a small

number (0.1, 0.05 or 0.01)

. State form of the test statistic, its

distribution under the null hypothesis, and

all assumptions

. Calculate the test statistic and p-value

. Make a decision based on the p-value(if p-

value < o, reject Hj otherwise we fail to
reject Hy)

. Interpret the conclusion using the consept

of the problem
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HypotheSiS Example:[Cylinderi]” Lo

TEStlng The strengths of@ steel cylinders were measured in MPa.
’SZ The sample mean strength is 1.2 MPa with a sample
Null <, standard deviation of 0.5 MPa. At significance level
a = 0.01, conduct a hypothesis test to determine if the M
cylinders meet the strength requirement of 0.8 MPa.  me&sn

Alternative L Res T oB )
Aa P-&jlo.g

‘l/ ®~9.0)

P-value

"5/ ny 15 & S C P'\QU\Q\’\"SI\ VO&MQQB /S
grknedm =7> e  dest slabhsNe i

41 /53



=~ 5.06

O_valne 3 PC°‘°5€(V“"B as o0 onere sXtreme

Volves fpan k= ‘;.06>

_p\Z\>) = p(\2\ Y 5 .0b)

2/\ l//‘/ _ —
-T.of > e :}_(g-oé)\ C} (“’306)

Some 0o



Y, Siace T Pdalue <X 0. 0f 5 T Meject
[

\'\ro A f—u\;o( -&4" %o\ .

6/ Tlere ‘s e.vxou\ss\,\ Ry dea (e 1o ConClw de
qh/\.n\'V '\'Q ™ e QYH"\CL&CS éoesj\,\

M eecy 'hQ (\Qéru'.(‘w\ql\ﬁ 'ag 0. D MPo



HypothESiS Example: [Concrete beams]

TEStIﬂg 10 concrete beams were each measured for flexural
strength (MPa). The data is as follows.

NU" N=19 _>[1]8.28.77.89.77.47.87.711.611.311.8
%
The sample mean was 9.2 MPa and the sample variance

Alternative 5'2_ was 3.0933 MPa. Conduct a hypothesis test to find out if
the flexural strength is different from 9.0 MPa.ax o =0 .9 |

P-value AL Yoo Y“@ JS. Yo! pE9 \ewel .
r'\o

LOQ{%O.Q\

' Unlkne o~ 0\ -
3 a=1e (LL5) & & s Unknecen. Jo

\L:. i“ Mo (w& Erew ’MT k-~ ‘t-‘

. . nwd 2
0\$$u\f"‘\?hg'\ %cg 0\\50 . 7\‘-, - )A|° ~ [\)LH/Q) )

t-sludenT 42 /70
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Hypothesis Te<tina tl<ing Confidence
Interval



Hypothesis

Testing Hypothesis testing using the i

We can also use the 1 — a confidence interval to perform
NU" hypothesis tests (instead of p-values). The confidence
interval will contain g when there is little to no evidence

. against Hy and will not contain py when there is strong
Alternative evidence against H,.

P-value

WNed 7
Yoo }’\’-JFD > 9

44 /70



Hypothesis

Testing Hypothesis testing using the CI

Steps to perform a hypothesis test using a confidence
Null interval:

Hot p=pa 1. State Hy and H;

Alternative ,
H«aﬁ”*i" " 2.State q, significance level S oK leawr

" 7’“9 \e\,.&.

- J——
¢ 4= 3. State the form of 100 (1 — ) % CI along
with all assumptions necessary. (use one-

sided CI for one-sided tests and two-sided
(l ITIEthOd CI for two sided tests)

P-value

4. Calculate the CI

5. Based on 100 (1 — ) % CI, either reject H
(if ug is not in the interval) or fail to reject
(if g is in the interval )

6. Interpret the conclusion in the content of
the problem
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Hypothesis
Testing

Null

”?&
Alternative 7

4
P-value <\

(I method

Example:[Breaking strength of wire, cont'd]

Suppose you are a manufacturer of construction
equipment. You make 0.0125 inch wire rope and need to
determine how much weight it can hold before breaking

so that you can label it clearly. You have breaking
strengths, in kg, fo sample wires with sample mean
breaking strength 91.85 kg and sample standard deviation
17.6 kg. Using the appropriate 95% confidence interval,
conduct a hypothesis test to find out if the true mean
breaking strength is above 85 kg.

1-Hy: p=85ws. @

Steps:

CAseC\-ay) = 95 L 2. =10.05
=) A = Q. 0;
_—,—’Z"
N
Sy oy Gicont
\ eved
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HypothESiS Example:[Breaking strength of wire, cont'd]

TEStlﬂg Yese & <> 3- One-sided test and we care about the lower
oA P‘ bound. So, we use (X — Zl-a 00). v

Null ’ = f

P o~

4- From the example in previous set of slides, 7

———
W b7 3620
5- Since puy = 85 is not in the CI, we reject H,.

P-value —> 6-There is significant evidence to conclude that
the true mean breaking strength of wire is
(| ITIEthOd greater than the 85kg. Hence the requirement
is met. <
\*q"r~:7 85
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HypothESiS Example: [Concrete beams, cont'd]

TEStIﬂg 10 concrete beams were each measured for flexural
strength (MPa). The data is as follows.

r\"?—
Null - < [1]82877897747877116113118—)< *;‘tf -2

The sample mean was‘ !MPa and the sample \m

Alternative 51 was 3.0933 (M Pa)?. At a = 0.01, test the hypothesis that

A A A §
the true mean flexural strength is 10 MPa using a

P-yvalue (Eonfldence mterVEDSteps
\..);%f\ — > 1-Hy : —10!'03 H : ,L/L\@/l(_)/
(I method e Kyiehess 2-a = 0.01
—_—

—s 3- This is two-sided test with n = 10 and 100
(1 —a)%Clis

()—(C)t(n 11-a/2) =

X@tn 11-a/2)—=)

s
7 Vn
%‘rwo Sded Test = fvo_siled (-1

one-S ded fest = owne-—<sidel C? 48 /70



Hypothesis
Testing

Null
Alternative
P-value

(I method

£, b9sc =3 25

Example:[Breaking strength of wire, cont'd]
<
4- Check that the CI is (7.393,11.007).
/‘\W

5- Since pg = 10 is within the CI, we fail to
reject Hy. B

——> 6-There is not enough evidence to conclude
that the true mean flexural strength is different
from 10 Mpa.
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HypothESiS Example:[Paint thickness, cont'd]

TEStIﬂg Consider the following sample of observations on coating
thickness for low-viscosity paint. _

NU" [1] 0.83 0.880.881.041.091.121.291.311.48 1.49 1.59 1.62

1.651.714441.76 1.83 .,

Alternative Usingtest the hypothesis that the true mean
paint thickness is 1.00 mm. Note, the 90\% confidence
interval for the true mean paint thickness was calculated

P-value from before as (1.201, 1.499).

(I method

1- Hy : ,uzl"vs. Hi: p

2-a = 0.1
_ L5 3- This is two-sided test with n = 16, 0
] kb&é ) unknown, so 100 (1 — ) % CI is
+ e .
§ onknewd (X —t11- @) = X Ftn1ian) )
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Hypothesis
Testing

Null
Alternative
P-value

(I method

Example:[Breaking strength of wire, cont'd]

4-The CIis (1.201,1.499).

5- Since gy = 1is not in the the CI, we reject
H,.

6- There is enough evidence to conclude that
the true mean paint thickness is not 1mm.

51/70



Section 6.4

Inference for matcho n=irs 3nd two-sample
data



Hypothesis
Testing

Null
Alternative
P-value

(I method

Matched Pairs

Two-sample

Inference for matched pairs and two-sample data

An important type of application of confidence interval
estimation and significance testing is when we either have
paired data or two-sample data.

Recall: Matched pairs

Paired data is bivariate responses that consists of several

determinations of basically the same characteristics
Example:

« Practice SAT scores before and after a
preperation course

» Severity of a disease before and after a
treatment

e Fuel economy of cars before and after
testing new formulations of gasoline
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Hypothesis
Testing

Null
Alternative
P-value

(I method

Matched Pairs

Two-sample

Inference for matched pairs and two-
sample data

One simple method of investigating the possibility of a
consistent difference between paired data is to

1. Reduce the measurements on each object
to a single difference between them

2. Methods of confidence interval estimation
and significance testing applied to
differences (using Normal or t distributions
when appropriate)
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Hypothesis
Testing

Null
Alternative
P-value

(I method

Matched Pairs @ radia

Two-sample

©

Example:[Fuel economy]

Twelve cars were equipped with radial tires and driven
over a test course. Then the same twelve cars (with the
same drivers) were equipped with regular belted tires and
driven over the same course.

After each run, the cars gas economy (in km/1) was
measured. Using significance levellaa = 0.05land the
method of/critical values) test for a ditfference in fuel
economy between the radial tires and belted tires.

Construct a 95% confidence interval for true mean
(difference)due to tire type. (i.@

|

car [1.0\2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
4776.6 \7(0 67 4.5 5.7 6.0 7.4 49 6.1 5.2
@ belted (4.1)4.9 .2 69 6,8 4.4 57 58 6.9 47 6.0 4.9
— ~
M o = Cadial _ belted
é ® _ ’\ ’\

> {(ffererce
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HypothESiS Example:[Fuel economy]

TEStlng car 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
NU" 0\ ~“radial 4.2 4.7 6.6 7.0 6.7 45 5.7 6.0 74 49 6.1 ﬂ
éa,,belted 4174962 69 6.8 44 57 58 69 47 6.0 4.9
AIternative —>d iO.l -0.2 0.4 0.1 -0.1 0.1 0.0 0.2 0.5 0.2 0.1 0.3
Since we have paired data, the first thi Is to find
P-value the differences of the paired data. (d = d; — ds,, where d;
is associated with radial and d, is associated with belted
tires.)
(l mEthOd Then writing down the information available:
Matched Pairs n=12) C 0.142,) lsd = 0. 191
v 4= . _ _ J
Two-sample d—nzdw d—n_lzd d)*

——>Then we just need to apply steps of hypothesis testing.
W Ny e Note that the null hypothesis here is that there is no

difference between the gas economy recorded of the two
different tires.(i.e ug = 0) 56 /70




HypotheSiS Example:[Fuel economy]
TEStlng > 1-Hy: pg=0vs. Hy: pg#0
NU" —= 2-a = 0.05 rc\
_ /7
w =\ 3- I will use the test statistics K = sj/_\?ﬁ which
Alternative < A has alt,_y[distribution assuming that
G oWt
P'VBIUE :\/ e« Histrue and
PRI di,da, -+, dy2 are@N(ud,ag)
(I method
Matched Pairs
Two-sample

57 /70



HypothESiS Example:[Breaking strength of wire, cont'd]

Testing _ > 4 K= 0.1?9:/2\1/ﬁ =\2.48|~ t(11,0.975)-
Null p — value :E’(|T| > K)\: P(|T| > 2.48)
= P(T > 2.48) + P(T < —2.48)

Alternative =1— P(T < 2.48) + P(T < —2.48)
(by thettable) =1 — 0.9847 + 0.9694 :\0.03 !

P-value 5- Since p-value < 0.05, we reject Hy.

| h d 6- There is enough evidence to conclude that

(I metho fuel economy differs between radial and belted
tires.

Matched Pairs

Two-sample

tu 0990 =2.20) 58 /70
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Hang on for a Second

Let's review slide 58 again



Hypothesis
Testing

Null
Alternative
P-value

(l method
Matched Pairs

Two-sample

Example:[Breaking strength of wire, cont'd]

p —value = P(|T| > K) = P(|T| > 2.48)
— P(T > 2.48) + P(T < —2.48)
—1— P(T < 2.48) + P(T < —2.48)
(by software) = 1 — 0.9847 + 0.9694 = 0.03
N
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We have seen t-student table

How do we get that p-value usin !



What is happening?



Hypothesis
Testing

Null
Alternative
P-value

(l method
Matched Pairs
Two-sample

q gx\_:\Cl\J\*\ t} f\ Q*
ff\obo\\d\:'\a.

Unlike standard Normal distribution table
which gives us probability under the standard
Normal curve, t tables are quantile tables.

i.e We use the ¢ table (Table B.4 in Vardeman
and Jobe) to calculate quantiles.

To have exact probabilities, we need software.

Table B.4

t Distribution Quantiles \ j/ VA A A

v

0(9) Q(95) 0(975) Q(99) 0(995) Q(9%) 0(9995)

@2
Q

v

3078 6314 12706  31.821 63.657 318.317 636.607
1.886 2920 4303 6.965 9.925 22327 31.598

1.638 2.353 3.182 4541 5.841 10.215 12.924
1.533 2.132 2776 3.747 4.604 7.173 8.610
1476 2015 2371 3.365 4.032 5.893 6.869
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The approach in calculating p-value when

t distribution is involved



Hypothesis
Testing

P-value and « are|both probabilities. (so
ul

They are areas under the curve in tails under

Two important points:

Alternative null hypothesis.
P-value v

(l method

Matched Pairs

Two-sample

66 /90



Hypothesis
Testing

Null
Alternative
P-value

(l method
Matched Pairs

Two-sample

Lrom example tb(es%',a g\re.:\a’hnj
For a random variable with ~ ¢ 11 .975): ¥

By the t table, the t quantile of ¢(11 g g75) is(2.2. )
t
(

N -
t-distribution curve of 4= 11 L) "°l/_b)

4 A

To\“& s\\o\«&&é oCes § N/L*Q{/‘L > o > 05 (W S'\an'\g\'(ﬁal\C&

%

5 2 29 -
S5 - tgt\)s.‘):,lg) —_ .&-L\\,o97-5)
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Hypothesis
Testing

Null
Alternative
P-value

(l method
Matched Pairs

Two-sample

leuel)

For the critical value we calculated under the null

- ——

hypothesis: + @

The critical value calculated is X = 2.34 _
Recs\\ 3 P-Vsivao — PQ \ T\ S \Z—-) g PL\‘ ‘7 23"’)

-—

t-distribution corve of df= 11 and K=2.34 J

041 P(T>‘2.’34—); |
PCT¢- 2 %)

e

0.1

0.0

4

A : ? ( ‘1-’5“5) :

Here, we need g,?’rwo\& o Rad TIL"(Q‘\‘AI S\,\g\égé °\(\Q.Q\. \/-/ 68 /90
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Qe > A

: S 7

Hypothesis Both together - £ ﬁ@—\, -,
TESting 8 2 )
NU" H_mmﬁmim curve of df= 11
Alternative A
P-value ool 4
CI mEthOd H_mﬁmbmmmeufdf: 1] znd E=2.34
Matched Pairs .. 0_yeive
Two-sample ool | T—

We reject the null if p-value < a.
P J e W L A Remember p-value and « are areas under the

curve 69 /90
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eI R

Hypothesis Example:[End-cut router]
TEStIﬂg Consider the operation of an end-cut router in the
manufacture of a company's wood product. Both a
N " leading-edge and a trailing-edge measurement were made
. — on each wooden piece to come off the router.
Al : i v Is the leading-edge measurement different from the
ernative trailing-edge measurement for a typical wood piece?

| Do a hypothesis test at a X (.05 to find out. Make a two-
P-value v sided 95% confidence interval for the true mean of the -~
difference between the measurements.

(I method

piece 1.000 2.000 3.000 4.000 5.000
leading_edge10.168 0.170 0.165 0.165 0.170
trailing_edge 0.169 0.168 0.168 0.168 0.169

Matched Pairs c—>\\/

TWO-Samp|e O fleace d 1 \—-00\ \.ob‘l \-m:}\—--t)o‘} 00|
= - 8%\; *
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Two-Sample Data



Hypothesis

Testing Two-sample data

Paired differences provide inference methods of a special
NU" kind for comparison. Methods that can be used to
compare two means where two different unrelated
samples will be discussed next.

Alternative
SAT score of high school A vs. high school B
P-Va|Ue Severity of a disease in men vs. women
Height of Liverpool soccerr players vs. Man
(| meth()d United soccer players
Fuel economy of gas formula type A vs.
Matched Pairs formula type B
Two-sample
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Hypothesis Two-sample data

Testing
Notations:
NU" Seam P\ e
Alternative A L
P-value Swmele s
4 trwe mesal (:EE:) (:::)
(I method L
| Sewple meaas }L « Q
Matched Pairs 2 2
& teve Unlionte ¢ Y
. i ~ (7//
Two-sample Bemple vepone &2 <

\V-\s% )A‘;TA‘Z = Tk\_r‘\l: QJ

- — s
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Large Samples



Hypothesis Lar
: ge samples (n; > 25,y > 25)
TEStlng —=HRex = Fa => il I"q_."'i) ve. Ra 'f“\ PaES ’

The difference in sample means x; — x4 is a natural

NU" StatIStIC to use 1n comparmg ,LL1 and /.1,2 r,\\ ‘ . L’\O
i.e = ["\\ - M > \3
Alternative _ _ _ o2
S E(X) = B(X) = Var(X) : Var(X,) = 2

>
If o1 and o2 are known, then we have

(I method ——>E(X1 - XZ) = E()—(l) — E()—fz) = K1 — M2 /

P-value

Matched Pairs - B I Y
.__7Var(X1©X2) = Var(X;) + Var(X,) = % 4+ Z_z
Two-sample T

— 2 ~
ZNerC¥ ) 4 (F1) VelCx o)

75/90



Hypothesis
Testing

Null

Alternative
P-value éﬁ
(I method o
Matched Palrs

Two-sample

Large samples (n; > 25,ns > 25)

If, in addition, n; and n9 are large,

N 2

X1 ~ N(p1, ) is independent of X, ~ N(,u,g, ) (by
CLT).

So that X 1 — X 9 18 approximately Normal (trust me)

5 @ Xl ,Ul 12) ~ N(0,1)
__|_n_ —
/ 2 in

Crey- 9"‘3\33 7 = *r- 7 ~ Ny

(ore Seowv Q\Q>
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HyPOtheS|S Large samples (n; > 25,ns > 25)
Testing

So, if we want to testglo DU — o = #}with some
alternative hypothesis, oy and o5 are known, and

Null n1 > 25,n2 > 25, then we use the statistic
. X1-X2—(#)

Alternative K=—= &%

P-value

which has a IV (0, 1) distribution if

(I method

1. Hy is true
Matched Pairs 2. The sample 1 points are iid with mean g4
7
and variance 0%, and the sample 2 points
Two-sample are iid with mean g9 and variance ag.

3.Sample I is independent of sample II

7

77190



Hypothesis
Testing

Null
Alternative
P-value

(I method
Matched Pairs

Two-sample

Large samples (n; > 25,ns > 25)

The confidence intervals (2-sided, 1-sided upper, and 1-
sided lower, respectively) for p; — 9 are:

e Two-sided 100(1 — )% confidence interval for
K1 — K2

(T1 — 2) £ 21-a)2 * ——l——

e One-sided 100(1 — )% confidence interval for
p1 — 2 with a upper confidence bound

(—o00, (r1 —x3) + 21_q \/——l——

e One-sided 100(1 — )% confidence interval for p
with a lower confidence bound

((®1 —22) £ 21— o \/——l—— , + 00)

78 /90



HyPOtheSiS Large samples (n; > 25,ny > 25)

Testing
If 01 and 09 are unknown, and n; > 25,n9 > 25, then
we use the statistic —{
L 2
NU" o \> (‘E p\&.CC Q/ ba S
o —Xo—(#) \
. K= S3 o & W} 'L 2 Sl
Alternative = %+ v 73 P2
and confidence intervals (2-sided, 1-sided upper, and 1-
P-value sided lower, respectively) for p; — ps:
e Two-sided 100(1 — o) % confidence interval for
(I method 1y — i
] S 82 (— /
Matched Pairs (:1:1 AT \/_1 + 2
Two-sample
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HyPOtheSiS Large samples (n; > 25,ny > 25)

Testing

e One-sided 100(1 — «)% confidence interval for
NU" (1 — e with a upper confidence bound
Alternative (=00, (21— 22) £ 210 * \/_ + -
P-val e One-sided 100(1 — a)% confidence interval for u

Value with a lower confidence bound

(methiod ((z1 —z2) + 21— a*\/_‘|‘_ , + 00)
Matched Pairs
Two-sample
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HypothESiS Example:[Anchor bolts]

TEStIﬂg An experiment carried out to study various characteristics
of anchor bolts resulted in 78 observations on shear

NU" strength (kip) of 3/8-in. diameter bolts and 88 observations
on strength of 1/2-in. diameter bolts.

Al : t Let Sample 1 be the 1/2 in diameter bolts and Sample 2 be

erndtive the 3/8 indiameter bolts.

Using a significance level of & = 0.01, find out if the 1/2 in

P'VBIUE bolts are more than 2 Kkip stronger (in shear strength) than
the 3/8 in bolts. Calculate and interpret the appropriate
99% confidence interval to support the analysis.

(I method bp 4

gwon ) * 11 = 88,my =78

Matched Pairse . T, =714, T, = 4.25

Two-sample e 51 =1.68,59 =1.3

A WNeo: Tm-\'\,,;i VS He - rf\-ﬁ,?l
@ d\to.%\

=
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Hypothesis
Testing

Null
Alternative
P-value

(l method
Matched Pairs

Two-sample

Example:[Anchor bolts]
e np =88,ny =78
e x1 ="7.14,25 = 4.25
e 51 =1.68,50 =1.3

@ e W, oMy Yy 25, 10 wse

\’7-&\'— ;‘q_)" 2

)L_':.
$:l »\-g'l./
n, N

16 W= o~ wm < Re s '\‘(WL) Sowvh p\b'\ 1S
d wm meen~ My, Vm{ia\:\ue_gq' ndependant Dg

SO\MP\&T\_ Y W meen r".,_ on 4 \IMO\I\C,Q

2
B’e\_) \e AW SACHS
/\_/\/W
82 /90
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Small Samples



Hypothesis
Testing

Null
Alternative
P-value

(l method
Matched Pairs

Two-sample

Small samples

If n1)< 25 ormy )< 25, then we need some other
assumptions to hold in order to complete inference on
two-sample data. J

\L

We need two independent ;samples to be iid
Normally distributed and 07 ~ 03 &

A test statistic to test Hy : 1 — o = # against some
alternative is

* KJZXI_)Q_(#ﬂ
1 1
=5y (a, + )
where Sg is called pooled sample variance and is

defined as -
e e e

< 2 2
_ (n1 —1)5; + (n2 — 1),
ﬁ 77/}4—/7’1/2 — 2
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Hy POthESiS Small samples
Testing

Also assuming

Null —> ® « Hj is true, @ @
« The sample 1 points are iid N (u1, 02), the sample 2
points are iid N (p2, 05),

Altematlve e and the sample 1 points are independent of the
sample 2 points and\o? ~ o73.
- 1S
P-value hen
g GoSW WA p‘\'§° n3 — —
(Imethod ° ~ X1 —X2—(#)

to wie—7 K =
. (S/ G+ )
Matched Pairs

Two-sample
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Hy POthESiS Small samples
Testing

1 — a confidence intervals (2-sided, 1-sided upper, and 1-
sided lower, respectively) for p; — o under these

Null assumptions are of the form:

(le v = ny + ny — QD

Alternative : | |
 Two-sided 100(1 — )% confidence interval for
P — [
P-value

(I method (21— 2 i@ﬁ\/—+_

« One-sided 100(1 — )% confidence interval for

Matched Pairs M1 — p2 with a upper confidence bound
- — 1 1
TWO Sample (_OO ; (xl — (EQ) + t(l/,l—a) * Sp\/(_ + _)
7\ = nq no
a1 -t

86 /90



Hypothesis
Testing

Null
Alternative
P-value

(l method
Matched Pairs

Two-sample

Small samples

» One-sided 100(1 — a)% confidence interval for
with a lower confidence bound

- L 1 1
(@17 72) ~ ey * Sy [ (G 70+ )

V=netn -2 /‘\fﬁi

In genelele, e

\J

oshwale +  Pofulation xsSD(estmote)
Q(\N%JC\\'\Q_S
(=0 . <
T e L fL‘ —, 67/?
ey ¢ sarfle = 87 /90



Hy POthESiS Small samples
Testing

Example:[Springs]

Nu|| The data of W. Armstrong on spring lifetimes (appearing
in the book by Cox and Oakes) not only concern spring

. longevity at a(950)N/ mm? stress level but also longevity at
Alternative a @O@N/ mm- stress level.

Let sample 1 be the 900 N/ mm? stress group and sample 2

P-value be the 950 N/ mm? stress group.
@5
Nt
900 N/mm2 Stress 950 N/mm2 Stress
(I method / /
216, 162, 153, 216, 225, 216, 225,171, 198, 189, 189, 135,
. 306, 225, 243, 189 162, 135,117,162
Matched Pairs x
ﬂ\: \o f\,’_— °
Two-sample
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Hypothesis
Testing

Null
Alternative
P-value

(l method
Matched Pairs

Two-sample

Small samples ploat s <0

Example:[Springs] 5 >3 \:zﬁm} u;:;sht\,ﬁ
R fsen ‘

Strass level (N'mm2)
el
* 950

gample

-1 o 1
theoratical

Let's do a hypothesis test to see if the sample 1 springs
lasted significantly longer than the sample 2 springs. (£,c¢ o(—.o.05)

——
—_—

N ote ¢ howevel e senpPle Sizes o\rLSW\Q\'\)

*k; dotn look {ngha_/UouwajL.
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Hy POthESiS Small samples

Testing
Example:[Stopping distance]

Nu|| Suppose 1 and p9 are true mean stopping distances (in
meters) at 50 mph for cars of a certain type equipped with

. two different types of breaking systems.

Alternative — v B v
Suppose nqy = ng = 6,1 = 115.7, x5 = 129.3, s; = 5.08
, andg.?s2 = 5.38. -

P-value 7

Use significance levelqg = 0.01 fo test

Ho:p1 —p2 = —10vSTHy —M26@
(Imethod -7

Construct a 2-sided 99% confidence interval for the true
difference in stopping distances.

Matched Pairs

Two-sample

90/90
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