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Chapter o:

Inference for curve and surface fitting



Simple Linear
regression

Inference for curve and surface fitting

Previously, we have discussed how to describe
relationships between variables (Ch. 4). We
now move into formal inference for these
relationships starting with relationships
between two variables and moving on to more.

Simple linear regression

Recall, in Ch. 4, we wanted an equation to describe how a
dependent (response) variable, y, changes in response to a
change in one or more independent (experimental)
variable(s), . —

We used the notation
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Simple Linear where 3 is the intercept.

Regressmn It is the expected value for y when x = 0.
=
— (1 is the slope.

It is the expected increase (decrease) in y for
every one unit change in x

€ is some error. In fact,

pu—

—

k e ~Aid N(O,az)

Recall:

—> Cheking if residuals are normally distributed is
one of our model assessment technique.

Goal: We want to use inference to get interval estimates
for our slope and predicted values and significance tests
that thegslope ﬁs not equal to zero.
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Variance Estimation



Simple Linear
Regression

Variance
Estimation

Lwniene W\

Vlariance estimation ooca metel

0
In the simple linear regression y = 8y + Blaz<+ €, the
parameters are 3y, 51 and o>.

We already know how to estimate 5, and (3; using least
squares.

v
We need an estimate fo@in a regression, or "line-fitting"
context. —
Definition:
A —
For a set of data pairs (z1,¥1), - - -, (Zn, Yn) Where least

squares fitting of a line produces fitted values
y; = bo + biz; and residuals e; = y; — v,

1 g 1 -
>ty T 9P g
\Y, - \ il -

is the line-fitting sample variance. b eCoanrsS e There o
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Simple Linear
Regression

Variance
Estimation

MSE

Variance estimation

Associated with s% 7 are(y =n—2 begrees of freedom

and an estimated standard deviation of response

_ 2
SLF — SLF'

This is also called Mean Square Error (MSE)
and can be found in JMP output.

It has v = n — 2 degrees of freedom because
we must estimate 2 quantities 8y and 57 to
calculate it. A —

—> s%  estimates the level of basic background

variation o2, whenever the model is an
adequate description of the data.

/
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for parameters

Inference fo

We are often interested in testing if 51 = 0. This tests
whether or not there is a significant linear relationship
between x and y. We can do this using

% 1.100* (1 — a) % confidence interval
% 2.Formal hypothesis tests { Vro “3\: N
Both of these require Ho E:}L ©
%@An estimate for 8y and —> \t’\ B {5:

2. a standard error for 5,

ceC B = SECh)
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Simple LiNear  Inference for Bi:

Regression
It can be shown that since y; = By + B1x; + €; and
: 1S N(0,02), th . oF
Variance @ 0%), then vl
Estimation (‘ /\ @
E\D‘Cg\ Z(ZE—ZE)
MSE -

Note that we never know o2, so we must estimate it using

Inference for | 2
Parameters So,a (1 — a)100% CI for1s gx s
v ges PA
—> i t(n—2,1-0/2) .
and the test statistic forE) By =
> K= 0 = #L) ~
v 3 o) Qf\ -Q-)
SECH oadel N



Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing]

A mixture of Al;Os, polyvinyl alcohol, and water was
prepared, dried overnight, crushed, and sieved to obtain
100 mesh size grains.

These were pressed into cylinders at pressures fromﬂZ,OOO 7
psi tosi, and cylinderwere calculated.
Consider a pressure/density study of n =,15 data pairs
representing 4}:‘

—
—

x = the pressure setting used (psi)
y = the density obtained (g/cc)

in the dry pressing of a ceramic compound into cylinders.
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing]

pressure density

pressure density

2000  2.486 6000 2.653

2000  2.479 8000 2.724

2000 2.472 8000 2.774

4000  2.558 8000 2.808

4000  2.570 10000 2.861

4000  2.580 10000 2.879 1\S
6000  2.646 10000 2.858 ‘\/(
6000  2.657

=
s
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Simple Linear Example:[Ceramic powder pressing]

Regressmn Aline has been fit in JMP using the method of least
squares.

Variance B
Estimation W 9o [BEE

v ~ Response density

v Regression Plot
29

MSE

2.75
Z 27
a

8 285

2.6

Inference for

2.45

Parameters S

~ Effect Summary
2\ Lack Of Fit 2
¥ Summary of Fit —
0.982193 & \2 S &(-e_ E-(( 0 (- — MSE‘
| _s oot Meon V-
’7 Root Mean Square Error 0.019909 -> (<o°
n ([l Observations (or Sum Wgts) ')_
v Analysis of Variance ~ | ':— g‘: L'~
Sum of
Source  DF Sq::Ir:s F Ratio QA el L
- SSR —> Madel 1 0.28421333 0.284213 717.0804 A’\S E e S - O
3 Eror  n.n¢13 0.00515267 7 - 0\99
. 555 C. Total 14 028936600 <0001 LF
/ v Parameter Estimates <
o<S Term Std Error t Ratio [Prob>t )
T 2875 0.012055 1 =000

—_— = L/ » Effect Details -\> t stathsNE - k= E;o— = 267-8

2-b - S —~
E,Z' ‘ —) SEC)D uL# Jeoxsn 13 /45
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Simple Linear CEﬁH_IBLEL[-%ramiCpowderpressing] we'tl (eject Ho- L@
0 ~/Residual density
RegrESSIOH o_mj . B4-128  -0.67 0.0 057 1.28 1 B‘=’: o o“\i _hpQC“—(S
Variance " | & sarfiCant
Estimation ?j AT (e levanshi(  between
- Prassare. & ém:—\d

MSE I iin
InfEfenCE fOI’ Residual by Predicted Plot
Parameters _ oo -

3 0.02 . . .

i 0.00 — . .

£ -002 * :

2.45 2.5 2.55 2.6 2.65 2.7 275 2.8 2.85 2.9
density Predicted

Least squares regression of density on pressure of ceramic
cylinders
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing]
1.Write out the model with the appropriate estimates.
J= B+ BX = borbX
— 92536 u-,%éé?x\;-s)(

2.Are the assumptions for the model met?

ZeS, i ces dtl ik slews (aadew SC Her

oromnd Zelo Ly Ne(«\D/Q QA-PloT leoksS

\(‘e\o.‘\'\\z'\\} \'\“M ;mc‘xCQ-Hxa "h*‘\\ QS é‘o\QXg
Qe r\b(n\&JZ

3.What is the fraction of raw variation in y accounted for
by the fitted equation?

ng:; 3‘Z~(l_\:/
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Example:[Ceramic powder pressing]

4. What is the correlation between x and y?

1w SLR 2 (‘:YE’-

= 50.9%’2\ = .99\)\

5.Estimate 2.

’\g)'z; 5}‘:: MWSE = 0.0 ©00AD(
6.Estimate Var(b;).
N\ 2 2
Sy
Ver () = - = (s&(b,)\
‘ o\
T (x -%) Y
= (\.VFx 0 )
-\
- 2 .30lb x|»

\
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Simple Lineal' Example:[Ceramic powder pressing]

Regressmn 7.Calculate and interpret the 95% CI for 34
: b+ & -5 6
Variance v tu\-z AP s 4.2b66Fx 1 (33 oy
Estimation I5-1, 2575
8.Conduct a formal hypothesis test at the a = .05
MSE significance level to determine if the relationship between

density and pressure is significant.

.\/1-H02 ,3120’08. H12 ,61750

Inference for
Parameters V 2-a =0.05

. -  b#
\ 3-Twilluse the test statistics K = ———
” (w;—7)2

which has a ¢,,_» distribution assuming that

—

o H) istrue and

» The regression model is valid
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Simple Lineal' Example:[Ceramic powder pressing]

Regression
: 41 8861677:}(1) M}E 975)=-2.160"
\ariance :

Estimation p-value= P(|T| > K) < 0.05 = «
MSE 5-Since K = 26.7843 > 2.160 = (13 _g75), We
reject Hy.
Inference for 6- There is enough evidence to conclude that
there is a linear relationship between density
Parameters and pressure
Q
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Inference for mean response

Recall our model

y1 = PBo+ iz +€, € S N(0702)-

Under the model, the true mean response at some
observed covariate value x; is

E(By + Brz; + €;) = Bo + Brzi + E(e;)
= Wy|z = Bo + b1z
Now, if some new covariate value x is within the range of

the x;'s (we don't extrapolate), we can estimate the true
mean response at this new . i.e

/lY|x — @j — b0+blm

But how good is the estimate?

19/45



Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Inference for mean response

Under the model, ,&Y‘m is Normally distributed with

E(iy,) = pyz = Bo + piz
and

1 T — 1)
Varfiy,, = o*(— + ( )

no (xi—x)?

Where x is the individual value of x that we care about
estimating M|z at, and x; are all z;'s in our data.

)

So we can construct a N(0, 1) random variable by
standardizing.

o+ S )

/J =

~ N(0,1)

20 /45



Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Inference for mean response

And when ¢ is unknown (i.e. basically always), we replace

o with Sp.p = \/ﬁ > (yi — 9;)? where we can get from
JMP as root mean square error (MSE). Then

Byle — Ky |e

SLF\/(% + zgz(zf)g)z)

To test H : Hylz = #, we can use the test statistics

T =

:[l’Y|a3 o #

SLF\/(% + gfm—j)f)Z)

which has a t,,_s distribution if 1) H; is true and 2) the
model is correct.

K =

21/45



Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Inference for mean response

A 2-sided (1 — a)100% CI for pu,, is

. 1 (z—z)
Hy |z + t(n—2,1—a/2) * SLF (5 T Z(wz — 5)2)

and the one-sided the CI are analogous.

Note:

in the above formula, Y (z; — z)?

by default in JMP.

is not given
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Inference for mean response

Using JMP we can get

SLF\/(— xm__wg)z) — \/(SL_F + (z — )3

< Var(by)

S

Note that:

We can get VAar(bo) from JMP as (SE(b;))?
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Simple Lineal' Example:[Ceramic powder pressing]

Regressmn Return to the ceramic density problem. We will make a 2-

sided 95% confidence interval for the true mean density of
Variance ceramics at 4000 psi and interpret it. (Note: x = 6000)
Estimation solution:

fy|z—4000 = Y = bo + iz

MSE — 2.375 + 4.8667 x 10> x (4000) = 2.569668

Inference for ~ and

Parameters \/( 1 (z-2) )
SLF — + —
no Y (x —x)?
Inference for net
mean 82 q/ 82
o LF - LF
response — \/ (—=+(z - a:)2Z & r;))) )
- Q&(\o \\X
/\CL‘O\\ -
Jo 25 /45



Simple Lineal' Example:[Ceramic powder pressing]

Regression
0.000396
_ \/ —— + (4000 — 6000)?(1.817 x 1062,
Variance wt
. : JN @\AT’Q
Estimation — ,/0.000039606
MSE — 0.0062933

Therefore, a two-sided 95% confidence interval for the
Inference for true mean density at 4000 psi is

Parameters —
R Ly y \/( 1 N (x — ) )
My |z=4000 (n—2,1—a/2) SLF py =Y
Inference for 2 (@i — )
mean
— 2.569648 & t/45_ x (0.0062933
response (15—2,0.975) ( )

— 2.569648 + 2.160 x (0.0062933)

— (2.5561 , 2.5833)
26 /45



Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Example:[Ceramic powder pressing]

Now calculate and interpret a 2-sided 95% confidence
interval for the true mean density at 5000 psi.

Pyle—s000 = Y = bo + b1z
— 2.375 4 4.8667 x 10~° x (5000) = 2.618335

and
S (&« ij_fq =
LF Y(x; -¥)
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

Example:[Ceramic powder pressing]

Therefore, a two-sided 95% confidence interval for the
true mean density at 4000 psi is

(z — )

> (z; — )

)

? 1
Hy|z=5000 + t(n—z,l—a/z) X SLF\/(; -+

— 2618335 Zl: t(15_2,0_975) X (0005449)

— 2.618335 + 2.160 x (0.005449)

= (2.60656 , 2.63011)

We are 95% cofident that the true mean density of the
ceramics at 5000 psi is between 2.60656 and 2.63011

28 [ 45



Multiple Linear Regression



Simple Linear L .
Regression Multiple linear regression

Variance Recall the summarization the effects of several different
Estimation quantitative variables x1, ..., 2,1 on a response y.
Y = Bo+ 1z + o+ Bpo1Tp_14
MSE Where we estimate 3y, . . ., 8,1 using the least squares
principle by minimizing the function
Inference for n n
Parameters  S(bo,-..,bp1) =Y (% —9)> =D (i — o — bizr; — -+ =
i=1 i=1 _ FQ_\XQ_\,{S\
Inference for to find the estimates b, . . ., by_1.
mean We can formalize this now as
response

Y, =B+ Bz + -+ Bp1Tp_1, + €

MLR where we assume ¢; S N(0,0?).
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Variance estimation

Based on our multiple regression model, the residuals are
of the form

€ =Y —?Qi =Y — (bo+blfl?1i+"-+bp—1wp—1i>

And we can estimate the variance similarly to the SLR
case.

Definition:

For a set of n data vectors

(3311, L21y+++yLp-11, y), e e ey (:Eln, L2ny oy Lp—1n, y)
where least squares fitting is used to fit a surface,

1 Y (y-19)° = 1 > el

n—p n—p
is the surface-fitting sample variance (also called mean
square error, MSE). Associated with itarev =n —p
degrees of freedom and an estimated standard deviation

2
Serp =

of response Sop = 1 /8% ...
P SF SF 32 /45



Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Variance estimation

Note: the SLR fitting sample variance s
2 _
case of s for p = 2.

2
LF

is the special
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Simple Linear Example:[Stack loss]

Regressmn Consider a chemical plant that makes nitric acid from
ammonia. We want to predict stack loss (§y@, 10 times the

Variance \% of ammonia lost) using
Estimation x1: air flow into the plant
Zo: inlet temperature of the cooling water
MoE x3: modified acid concentration (% circulating
f f acid -50% ) x 10
Interence for
Parameters
Inference for
mean
response
MLR
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SilTIp'E Linear Example:[Stack loss]
Regression . By of Fi

RSquare 0.975006
Adj 0.969238 5 L
. [:Eg:‘raﬂr:an Ej;quarve Error 1.252714 | \i MSE = SL\:
M of Res 47058
Variance Lkl N e
1 1 v Analysis of Variance
Estimation = \> .
Source DF Squares Mean Square F Ratio '), |
Model 3 795.83449 265.278 160.0432 N&E = (‘ L 5 )
I Error 13 20.40080 1.569 | Prob > F
MSE C. Total 16 816.23529 <.0001*

v Parameter Estimates
Estimate | Std Error | t Ratio |}

Inf r n f. \p| <-—xr!itarca 37.65246 | 4.732051
erence org;aé—wa Sp LA

-0.06706 |\0.061603

Parameters b;/ . ]

Inferencefor  ,.:" v S
medn o . . . )
response 4| s

Residual y

ra

. ]
-3 i
0.05 042 03 045 06 075084 09
45 55 65 75 1618202224286 7075 80 85 90 51015 25 35 Normal Quantile Plot
x1 x2 3 Predicted y

MLR
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Simple Linear

Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Example:[Stack loss]

Then we have the fitted model as

y = —37.65246 + 0.7977x1 4+ 0.5773z2 — 0.0971x3

The residual plots VS. x1 , z2 23 and g look like
random scatter around zero.

The QQ-plot of the residuals looks linear,
indicating that the residuals are Normally
distributed.

This model is valid.
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Inference for parameters

We are often interested in answering questions (doing
formal inference) for By, . . ., 8,_1 individually. For

example, we may want to know if there is a significant
relationship between y and x5 (holding all else constant).

\vspace{.2in}
Under our model assumptions,
b; ~ N(B;,d;io”)

for some positive constant d;,2 = 0,1, ...,p — 1. That are
hard to compute analytically, but JMP can help)

That means

bi—PBi _ bi— B
sLrvVd; SE(b;)

~ t(n—p)
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Inference for parameters

So, a test statistic for Hy : 8; = # is

bi—# b —#
sLrvVd; N SE(b;)

if 1) Hy is true and 2) the model is valid, and a 2-sided
(1 — «)100% CI for j; is

bi £ t(n—p1-a/2) X SLF\/Ei

K =

~ t(n—p)

or

bi :l: t(n—p,l—a/2) X SE(bZ)
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Simple Linear Example:[Stack loss, cont'd]

Regressmn Using the model fit on slide 35, answer the following
questions:

Vlariance 1.Is the average change in stack loss (y) for a one unit

ESt|mat|On change in air flow into the plant less than 1 (holding
all else constant)? Use a significance\testing framework
with a = .1. V. )

MSE o Gy mssecteted @i X
solution: '

Inference for 1-Hy: pr=1vs. Hy: B <1

Parameters 9o — 0.1

Inference for 3- I will use the test statistics K = S%zbll) which

mean has a t,,_,, = t17_4 distribution assuming that

response « Hjistrue and

e The regression model
MLR Yi = Bo + Biwi1 + Bexi2 + P3wis + € is

valid
40 /45



Simple Linear Example:[Stack loss, cont'd]

Regression

6300\)

Variance .
Estimation ~ 5

MSE

Inference for
Parameters

Inference for
mean
response

MLR

«—

0.7977-1
4- K = @ = —3 andﬁ('lg,og) :E). So,

p-value \
=PT<K)<P(T<-3)<0l=a__~

-2 ;\.’BS°
5-Since K = -3 < —1.35 = —t(13,.9),We

reject Hy.

6- There is enough evidence to conclude that
the slope on airflow is less than one unit
stackloss/unit airflow. With each unit increase
in airflow and all other covariates held
constant, we expect stack loss to increase by
less than one unit.
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Example:[Stack loss, cont'd]

2.Is the there a significant relationship between stack loss
(y) and modified acid concentation (x3) (holding all else

constant)? Use a significance testing framework with
a = .05.

solution:
1-Hy: B3=0vs. Hy: B3#0
2-a = 0.05
3- I will use the test statistics K = Sbb?;’zbt) which

has a t,,_, = t17_4 distribution assuming that

o Hjistrue and
o The regression model

Yyi = Bo+ Bizxi1 + Paxia + P3xis + € is
valid
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Simple Linear Example:[Stack loss, cont'd]

Regressmn LK — —obgggtl)g—o — _1.09 and
) t(13’.975) = 2.16. SO,

Variance

Estimation p-value = P([T] > |K]) =

MSE 5- Since p-value > «, we fail to reject Hy.
6- There is not enough evidence to conclude

Inference fOI' that, with all other covarates held constant,

Parameters there is a significant linear relatinoship
between stack loss and acid concentration.

Inference for

meadn

response

MLR
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Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Example:[Stack loss, cont'd]

3.Construct and interpret a 99% two-sided confidence
interval for (3.

solution:
tn—p1-a/2) = t(13,905) = 3.012
then

bs £ t(n_p1—as2) SE(b3) = —.0.06706 + 3.62(0.0616)
— (—0.2525 0.1185)

We are 99% confident that for every unit increase in acid
concentration, with all other covariates held constant,
we expect stack loss to increase anywehre from -0.2525
units to 0.1185 units.

44 [ 45



Simple Linear
Regression

Variance
Estimation

MSE

Inference for
Parameters

Inference for
mean
response

MLR

Example:[Stack loss, cont'd]

4.Construct and interpret a two-sided 90% confidence
interval for 3,

solution:
For a 90% two-sided CI for B,
a=0.1,tu p1a/2) =tasess) = 1.77
Then
by £t pi-as2) X SE(b2) = 0.5773 = 1.77(0.166)
= (0.2834 0.87.127)

We are 90% confident that for every one degree increase
in temprature with all other covariates held constant,
stack loss is expected to increase by anywhere from 0.2834
units to 0.8713 units.
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